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The approximate location of imperfection in a unit circle
using the spectrum of Laplace operator
as a research tool

1. Introduction

In faults diagnosis, there are a lot of methods for localizing and identify the defects [1, 2].
Among these methods, we can distinguish non-destructive detection of defects (Non De-
structive Testing, NDT) involving the comparison of the responses of the system with
known force with similar characteristics of the reference model — these methods do not
require destroying the tested system. NDT is carried out either at random and locally,
mainly after the discovery of damage, or periodically in order to minimize the risk of failure
of the object. NDE techniques are used mainly in order to characterize the type and size
of likely damage locations. At the design stage not only the physical properties that we
want to measure are examined, but also the geometry of the object. It has an impact on
the deployment of the sensors with which we record the measurements [3].

2. Theoretical issue

In theoretical considerations concerning the problem of the location of the imperfec-
tion for the fixed bounded domain we will take advantage of spectral theory results and,
more precisely, the conclusion of the spectral theorem for compact and self-adjoint opera-
tors, which says that all eigenvalues of the Laplace operator on the bounded +eo domain are
positive, have finite multiplicities and Q < R? is the limit point of eigenvalues. Consider
the problem

Au =Du €))
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There exists the inverse operator for the 4 operator, therefore we have:
u=A"u )
From the linearity of the A operator results the following:

u=rlu (3)

hence:

Alu==u “

. . . 1 1 1
For the above equation exists the countable set of eigenvalues {—, 7L_’ X_’ },
1 M A3

A; # 0, i € IN whose the only limit point is point 0. Furthermore, every eigenvalue has
a finite multiplicity.

2.1. The definition of the problem for the domain
without the imperfection

Let the domain Q c R? be given. It could be a square, a circle or any other two-dimen-
sional figure. For the Q domain and for the k£ = 1, 2, ... we define the problem:

Aug (x,y)= kgu,? (x,y)in Q )
u,(() (x,y)=0 on 0Q

where A is a linear operator A: H(l) Q)—>H _1(9) such that the operator — A4 is an elliptic
operator and an operator inverse AL 12 Q)— 12 (€2) is a compact operator. Eigen-
values and eigenfunctions (Xg,u,? (x, y)) of the problem (5) refer to the domain without
deformation.

2.2. The definition of the problem
for the domain with the imperfection

Let us consider the 2 domain with the D imperfection. The imperfection is a circle
with radius » = 0.01. Let us mark the Q domain with described imperfection as Qp. Then
we get Qp = Q/D and we consider the following spectral problem for the €, domain and
k=1,2,..

{Auk (5,y) = M (x,y) in Qp (6)

u, (x,y)=0 on 0Qp
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The solution to the problem above is an infinite sequence of pairs (A, uy) fork=1,2, ...,
where A, are eigenvalues and u(x, y) are eigenfunctions. These eigenvalues are dependent
on the location and size of the imperfection D.

2.3. The definition of the inverse problem

The main aim of our study is to solve the inverse task [4, 5], which consists in localizing
the imperfection (coordinates (xy, ))) in the unit circle sh= ((0, 0), 1) based on the spectrum of
the Laplace operator for this circle:

o(A) = (1, ) (7

3. Numerical simulation

The computer simulation was carried out in MATLAB program using the PDE Tool
package [5]. In the mathematical model the Laplace equation defined for the Q = Sl((O, 1, 1)
domain was taken as an elliptic operator [7]:

2 2

Au(x, y) :=§—2u(x, y>+aa—2u(x,y> ®)
x y

The goal of the numerical simulation is to observe the behaviour of the spectrum of
the Laplace operator for the unit circle when the deformation is located at different points
of this circle. Because studying the spectrum of the Laplace operator for the unit circle
with deformation at every point of this circle is a complicated task, we have chosen a grid of
equidistant points (Fig. 1) to create the isochors maps for minimum and maximum values
of this spectrum (Fig. 2¢ and Fig. 3c¢).

More precisely, we were analysing the spectrum for every subsequent point, which we
placed the deformation in (Fig. 1). For every point (deformation), we used the undermen-
tioned algorithm to get the maximum and minimum values of eigenvalues to it.

The algorithm:

1. A unit circle is used as domain €.

2. The deformation is placed in the fixed point of this circle.

3. The deformation is placed in the fixed point of this circle (triangulation of the domain
with deformation).

4. The type of the equation and its specification is chosen (eigenmodes, a = 1.0, ¢ = 0.0,
d=1.0).

5. Eigenvalues A,,;, and A, are obtained.
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Fig. 1. The grid of points which the deformation was placed in
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Fig. 2. Next steps in creating isochors map for A,

b) three-dimensional surface of A,,; ¢) isochors of lambda max 7,
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Figure 2a presents scattered data which we get for minimum values of eigenvalues
Amin- From this data we make a three-dimensional surface (Fig. 2b). Now that the data is in
a gridded format, we compute and plot the contours of isochors (lines connecting points
of the same value Figure 2c). We will use this map to read the approximate location of the
imperfection.

The same analysis will be carried out for the minimum values A;, of the spectrum
of the Laplace operator. Figure 3a presents scattered data for minimum values of eigen-
values A, From this data we make a three-dimensional surface (Fig. 3b). Figure 3c pre-
sents the projection of the three-dimensional surface of minimum values of eigenvalues
Amin 00 XY plane.

Now, when we have isochors of maximum and minimum values of eigenvalues, we are
able to determine the domains, where the deformation will be located in. These domains
which correspond to the mea-

will be common parts (rings) of isochors maps /.;, and /.,

surement A, and A,

a) ) b)
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Fig. 3. Next steps in creating the isochors map for lambda min: a) scattered data of A

b) three-dimensional surface of A,;;; ¢) isochors of lambda min /7 ;,

'min>



14 Mateusz Brzgk, Marta Zagorowska, Wojciech Mitkowski

3.1. Example

As an illustrative example (Fig. 4), let us consider a spectrum of form [6.77, 52.53,
53.84, 87.43]. For this measurement, the maximum value of eigenvalues is A, = 87.43,
and the minimum value of eigenvalues is A,,;, = 6.77. From the isochors map 7., for A .«
we get the domain (ring) with the range [87.88]. For minimum value of eigenvalues from
the isochors map /,;, we get the domain (ring) with the range [6.6, 6.8]. Common parts of
both domains (grey color in Fig. 4) are an approximate domain where imperfection is.

Coordinates y

. | .
-1 a5 06 04 02 u] 0z 0.4 0.6 0.4 1
Coordinates x

Fig. 4. An illustrative example for the spectrum of form [6.77, 52.53, 53.84, 87.43]

4. Conclusions

As the numerical simulation shows, based on the spectrum of the Laplace operator
for the unit circle S' = ((0, 0), 1) with the deformation, we are able to define domains (rings),
where the deformations are located in. This method does not solve the problem, unfor-
tunately, a clear inverse searching damage, but greatly simplifies the search for further
damage.

References

[1] Uhl T., Wspétczesne metody monitorowania i diagnozowania konstrukcji, Wydziat Inzynierii Me-
chanicznej i Robotyki, Akademia Gorniczo-Hutnicza, www.fundacjarozwojunauki.pl/res/Tom2/
6_Uhl.pdf.

[2] Brzgk M., Mitkowski W., Lokalizacja uszkodzenn w zadanym obszarze z wykorzystaniem teorii
spektralnej, Pomiary, Automatyka, Kontrola 2014, Vol. 60, No. 1.

[3] Lipnicka M., Approximate localisation of imperfections in fixed domain, Journals of the Polish
Mathematical Society 2011, Vol. 39, No. 2.


www.fundacjarozwojunauki.pl/res/Tom2/6_Uhl.pdf

The approximate location of imperfection in a unit circle... 15

(4]
(3]
(6]
(7]

Jackowska-Strumitto L., Sokotowski J., Zochowski A., Henrot A., On Numerical Solution of Shape
Invers Problem, Computational Optimization and Application 2002, Vol. 23, pp. 231-255.
Kabanikhin S.1., Definitions and examples of invers and ill-posed problems, Journal of Inverse
and I11-Posed Problems 2008, Vol. 16, No. 4, pp. 317-357.

Matlab, Partial differential equation toolbox. Users guide, The Math Works, Inc. www.math-
works.com.

Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-
-Verlag, Berlin — Heidelberg — New York — Tokyo, 1983.


www.mathworks.com



