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1. Introduction

The purpose of this paper is to show a method of modelling behavior of patients
in Primary Health Care (PHC). The reason for that is caused by the fact, that nowadays
the methods of modelling PHC systems don’t exist. In the paper the author described pri-
mary health care systems, stochastic process modelling and presents result of simulation
patient number in year for different distribution functions.

2. Primary Health Care system

Primary Health Care (PHC) is a multidimensional and country-to-country diverse part
of the health care system, thus it is a real challenge for modelling these systems. The Prima-
ry Health Care Activity Monitor in Europe (PHAMEU) study (held in 2008 through 2010)
in 31 European countries aimed to develop a universal matrix for international comparisons
of PHC systems. The classical quality model by Donabedian (structure-process-outcome)
has been filled with PHC features (accessibility, coordination, comprehensiveness, continu-
ity) and quality, effectiveness, governance, financing and workforce measures (see [2]).
The international research team used existing datasets, reports, publications as well as grey
data and opinions of key-informants to provide innovative international comparisons of
PHC systems in Europe. Also it proved the usefulness of the PHC quality assessment mo-
del. In 2011 another study — Quality and Costs of Primary Care in Europe (QUALICOPC)
has been initiated, using the PHAMEU-based matrix for PHC quality evaluation (see [3]).
In Poland, as in other Central and Eastern European countries the methods for reliable
monitoring of care provided to patients has not been introduced in primary health care.
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Moreover, the data collected by the National Health Found are not be published. The above
situation makes a difficult take steps in family physician practices to improve the quality of
care (see [2, 3]).

The world currently uses the following methods of financing PHC (see [13]):

Fee for service — is the pay gap between doctor (service providers, or any other pro-
fessional employee) on the basis of the number and type of individual benefits which have
been awarded to patients. For any service shall be determined a specific price usually in-
cluding reimbursement of costs and margin. The number of granted benefits of a specific
price determines the height of the achieved revenue.

Capitation — a system in which a physician (or other medical worker or trader)
receives a fixed amount for each person covered by the care, in order to be able to provide
within the time period a specified level of benefits and offer a defined package of medical
services. If the operation of this system is to create a list of names of patients under care.
Consideration on capitation may cover only the cost of consulting a doctor himself, but
often includes other related costs. Even more often in the way benefits are financed through
a specific package of services including personnel costs.

Fixed fee (salary) — a typical solution for full-time employees, the dominant employ-
ment especially in public structures. Doctors and other medical personnel receive a fixed
sum for a predetermined time. The remuneration shall be determined due to a qualifications,
a years of work and often in relation to salaries in other sectors of the public. Fixed remu-
neration (salary) in principle does not depend on the work, as measured, for example. the
number of visits, the number of patients treated, the severity of the case, etc. These items
may be taken into account in the framework of the so-called. Incentive bonus, which use
in the health system, however, is significantly limited.

Fee for the case — the way in which the payment service provider receives a fixed
salary for a comprehensive investigation in a particular case, or disease entity. The sum paid
for each case is calculated on the basis of the expected procedures established and con-
firmed in the Protocol of treatment. Salary requires the development of special rank order,
uniquely identifying the case and called for him to pay.

The International Classification of Diseases (ICD) is the standard diagnostic tool
for epidemiology, health management and clinical purposes. ICD-10 is a medical classifi-
cation list by the World Health Organization (WHO). It contains codes for diseases, signs
and symptoms, abnormal findings, complaints, social circumstances, and external causes
of injury or diseases. It is used to monitor the incidence and prevalence of diseases and
other health problems, proving a picture of the general health situation of countries
and populations. All the described methods of finance primary health care based on the
number of patients served at the facility. It follows that an efficient way simulation of PHC
will be a simulation number of patients in a time range.
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3. Stochastic process modelling

Many stochastic processes used for the modeling of financial marks, biological sys-
tems, social systems and other systems in engineering are Markovian. To simulate the pro-
cess can be used Markov Chain Monte Carlo (MCMC). In statistics MCMC method is
a class of algorithms for sampling from a probability distribution. Probability distributions
can be found the context of Bayesian data analysis. The goal will be to find parameter
values in a probabilistic model that the best explain the data. It is based on known infor-
mation (a priori). The created mathematical models are then created a posteriori. Such
approach guarantees that solution is influenced by the known data, therefore the models are
often more accurate than obtained with other methods (see [10, 117).

In this section, the author will describe basic definitions from stochastic theory, the
Markov Chain process, Markov Chain Monte Carlo Simulation and the Metropolis Hasting
algorithm.

4. Stochastic process

A stochastic process X" is a family of random variables indexed by parameter # (this
parameter can by associated with time). Formally, a stochastic process for probability space
(Q, F, P) and measurable space (S, 2). The sample space Q is a set of outcomes, where an
outcome is the result of a single execution of a stochastic model. F is set of all events in
the model and P is the probability measure. The probability measure is the function return-
ing an event’s probability (P: F — [0, 1]) this can by. The S-valued stochastic process is
a collection of S-valued random variables on Q. The stochastic process is indexed by
a totally ordered set 7. That is, a stochastic process X is the collection:

{x"ner}

5. The Markov Chain process

Markov Chain is a stochastic process where we transition from one state to another
using a sequential procedure. We start Markov Chain in state x©, and use a transition
function p(x(") |x("_]) ), to determine the next state, conditional on the last state. We can
say a stochastic process {n("): nz 0} is a Markov Chain if for all times n = 0 and all state
ig, 11, --» Ipy, j € S (state space):

P(x{n} - jlx(n—l) - i(n_]), +(=2) = i(n—Z)’ - X0 = io)=

=P = j 12D =i )) =B
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P; ; denotes the probability that the chain moves from state x" =D to state x*). This value is
referred to as a one-step transition probability. The square matrix P = P(i, j) € S, is called
the one-step transition matrix and each row sum to one (see [8, 9]).

6. Probability density functions

The probability density function (pdf or p.d.f) of continuous random variable X with
support S is an integrable function f(x) satisfying the following:

— f(x) is positive everywhere in the support S, that is f(x) > 0 for all x in S,
— the area under the curve f(x) in the support S'is 1, that is:

¢ f@ax=1,

— if f(x) is the probability density function of x, then the probability that x belongs to 4,
true is equality:

P(XeA)=| | [

A continuous random variable takes on an uncountably infinite number of possible
values. For a discrete random variable X that takes on a finite or countably infinite number
of possible values, we determined P(X = x) for all of the possible values of X, and called
it the probability mass function. For continuous random variables, as we shall soon see,
the probability that X takes on any particular value x is 0. That is, finding P(X = x) for
a continuous random variable X is not going to work. Instead, we’ll need to find the proba-
bility that X falls in some interval (a, b), that is, we’ll need to find P(a <X <b). We’ll do
that using a probability density function.

Example

Let X be a continues random variable whose probability density function is:
f@) =24

For x € [0, 1]. Let’s respond to questions:

1. Do f(x) is a valid probability density function?
— f(x) is positive for all x € [0, 1],

1 1
[ r@dx=xtly =1,

0 1
Answer: Because f(x) is positive for all x € [0, 1] and _[ f(x)dx=1 that is valid proba-
bility density function. 0
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. . 1 . . 1
2. What is the probability that X falls between 5 and 1? That is, what is P(Z <X < 1)?

1 1
p[lex<1)- [ axdx=x* =1t
2 0 16 16

Answer: Probability that X falls between % and 1 is equal %

Markov Chain Monte Carlo simulation

Markov Chains are relatively easy to simulate from, they can be used to sample from
an a priori unknown and probability distribution. Monte Carlo sampling allows one to esti-
mate various characteristics of a distribution such as the mean, variance, kurtosis, or any
other statistic of interest to a researcher. Markov Chains involve a stochastic sequential pro-
cess where we can sample states from some stationary distribution.

The Markov Chain Monte Carlo (MCMC) method is a general simulation method for
sampling from posterior distributions and computing posterior quantities of interest.
MCMC methods sample successively from a target distribution. Each sample depends on
the previous one, hence the notion of the Markov Chain. A Markov Chain is a sequence of
random variables, 6], 92, ... for which the random variable 8’ depends on all previous 0 s
only through its immediate predecessor.

Monte Carlo, as in Monte Carlo integration, is mainly used to approximate an expecta-
tion by using the Markov Chain samples. In the simplest version

[2©)p(6)d6 = % DNIC
s t=1

Where g is a function of interest and 6’ are samples from p(8) on its support S. This
approximates the expected value of g(0). The Markov Chain method has been quite success-
ful in modern Bayesian computing. The simplest Bayesian models recognize the analytical
forms of the posterior distributions and summarize inferences directly. In moderately com-
plex models, posterior densities are too difficult to work with directly. With the MCMC
method, it is possible to generate samples from an arbitrary posterior density p(6|y) and to
use these samples to approximate expectations of quantities of interest (see [4, 5]).

7. Metropolis-Hasting algorithm

To illustrate the work of all MCMC methods the Metropolis-Hastings method has been
described.
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Suppose our goal is to sample from the target density p(0). The Metropolis-Hastings
method creates a Markov Chain that produces a sequences of state:

00 M . ..00) ...

where 01 is a state at iteration i. The samples from the chain, after burning, reflect samples
from the target distribution p(6). In this algorithm, we initialize the first state from random
value. We then use a proposal distribution p(e(”) |6(”_1) ) to generate a new candidate
state 8", that is conditional on the previous state. The proposal distribution is chosen by the
research and good choices for the distribution depend on the problem. To the choose pro-
posed distribution we can use e.g.: maximum entropy, nuclear estimators and transforma-
tion groups.

The next step is to either accepted or reject proposal state. The probability of accepting
the sate 8 is:

S PRI G Clasl))
’ p (¢—D )q (9 | oD )

To make a decision on whether to actually accept or reject the proposed state, we
generate a uniform deviate u. If u > «, the proposal is accepted and the next state value is
equal 8", else we reject the proposal and next state value is equal to the old state value. We
continue generating new proposals conditional on the current state of the method, and either
accept or reject the proposals. This procedure continues until the sample reaches conver-
gence. At this point, samples 0% the samples from the target distribution p(8).

This can be converted into an algorithm as follows:

1) generate initial value of u, and set 0 and i = 0;
2) set max iteration number N,
3) repeat:

a) i+=1,

b) generate proposal 9" from p(e(i) | gD ),

c) calculate the accept probability: o = min| 1, P (9 )q(ﬁ - |6 ) ,
p(6GD)g (0" 0¢D)

d) generate u from a uniform (0, 1) distribution, A
¢) if u > a, accept new state and 6 = 0”, else set 6 = 60,
4) until i = N.

The fact that asymmetric proposal distributions can be used allows the Metropolis-
-Hastings procedure to sample from target distributions that are defined on a limited range
(see [6, 7]). With bounded variables, care should be taken in constructing a suitable proposal
distribution. Therefore, the sampler will move towards the regions of the state space where
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the target function has high density. However, note that if the new proposal is less likely
than the current state, it is still possible to accept this “worse” proposal and move toward it.
This process of always accepting a “good” proposal, and occasionally accepting a “bad
proposal insures that the sampler explores the whole state space, and samples from all parts
of a distribution (including the tails). In the numerical experiments all algorithms have been
prepared by the author.

8. Numeric experiments

Experiment 1

In order to depict the described simulation methods and demonstrate the actual data, it
will be discussed how to simulate the amount of visits to the Cabinet at the PHC for the age
group of children 1 year based on data from 2009. In 2009, in the age group was 622 visits
within 215 days. The average value of the day is advice about 2.44, while standard devia-
tion is about 1.7. The maximum number of visits in a single day to 18 and the minimum 1.
As you can see in Figure 1 the probability distribution for this sample can be estimated
using the normal distribution, given by the formula:

NESUN
P(x,HsG) =—F¢€ 20°
ov2n

Where [ is the expected value and standard deviation ©.
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Fig. 1. Real data histogram and normal density function
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Fig. 3. Simulation data histogram and normal density function
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Let’s say that on the basis of this information, we want to carry out simulations for
the same clinic for the year again, except that it will be open 365 days a year. Therefore, the
function of acceptance State the Metropolias-Hastings will take the form of:

p(e*,u,ﬁ) .
p(69) 1,6)

Simulations with the given conditions, gave the results as shown in Figure 2. In addi-
tion, it should be noted that for a specified period simulation of 365 days, the algorithm
generated in the United States where the number of visits per day does not exceed 18.
In total, in the simulation have been 893 visits or expected value was approximately 2.44
and the standard deviation of about 1.7. This means that have been preserved all the proper-
ties of the simulated what confirms the Figure 3.

o =min| 1,

Experiment 2

For data from experiment 1 suppose the probability distribution can be described using
the Poisson distribution:

wre™
x!

plep) =
Where 1 is the expected value. This example illustrates the Figure 4.
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Fig. 4. Real data histogram and Poisson density function
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As it’s easy to see that the results of the simulation for the Poisson distribution (Fig. 5
and 6) differ significantly from results for the normal distribution (Fig. 2). It should be
noted, however, that also in this case the parameter describing the distribution (the expected
value) has not changed as a result of the simulation. This example illustrates the behavior
of the simulation in the case of proper selection of the distribution for this phenomenon.

9. Conclusion and future work

The main objective of future work is to create a model of the patients behavior for Pri-
mary Health Care (PHC) unit. This issue can be divided into subtasks: quantitative analysis
of acquired data, determination of the patients behavior in PHC model, design and creation
of the simulator. Quantitative analysis based on provided data. Statistical analysis of
the acquired data will be made using Bayesian statistics methods, in particular the methods
of estimating probability distributions, e.g.: maximum entropy, nuclear estimators and
transformation groups. As a result of these analyzes, it is planned to draw up a mathema-
tical model describing the work of PHC units based on the Monte Carlo method using
the Markov Chain.
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