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1. Introduction
1.1. Traditional Run-time Memory Allocation

Early operating systems used to measure the run-time memory usage of a process
by adding the length of its code, data, and other segments. The very first implementations
of the C libraries kept track of all blocks of memory allocated by growing and shrinking
the data segment at run-time. While no requirement is placed on how the standard library
must allocate storage, it is generally understood to use a heap structure.

Traditional memory allocation mechanisms are for multiple reasons inadequate. Due to
fragmentation, it is possible that the data segment contains enough free space to satisfy
a request, but not enough contiguous space. Then, the data segment grows since the new
memory will reside at the end of the heap. The C standard library [1] does not include any
mechanism for garbage collection or compaction. Freeing memory does not necessarily
shrink the data segment, as it addresses the need to stay the same to maintain pointer con-
sistency.

The problem with the flat addressing approach is that the amount of allocated memory
is directly related to the highest address a program references. In other words, without com-
paction, empty spaces sandwiched between reserved blocks of memory in a program’s data
segment are unusable by other programs. Simple flat addressing implementations may give
malicious processes the ability to modify data belonging to another process or kernel.

To solve the problems associated with flat addressing, modern multi-tasking operating
systems tend to use protected virtual memory (for example [2]). A program reserves
its memory in fixed-size blocks (pages) and maps them to the addresses in such a way that
one process’ address space is completely isolated from another. Because memory is not
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addressed relative to the data segment’s base address, the run-time memory require-
ments are not related to the largest address in use. When memory is freed, empty pages are
released and the kernel can give the empty pages to other processes without requiring
compaction.

1.2. Related Work

It must be noticed that virtual memory does not come cheap. Special hardware and
software is required to implement translation from logical to physical memory addresses,
protected-mode operating systems must perform mode switches whenever they allocate or
release pages, and memory is allocated in blocks of one or more page at a time. In addition,
sharing memory between processes or accessing DMA-mapped regions requires the use of
special APIs such as Posix or Win32 to alter the memory map when using virtual memory.

Modern operating systems allocate virtual memory by reserving enough pages to fill
a user-requested amount of space. Under this scheme, the kernel is not required to map
these pages to physical memory until the first page fault (reference to an unmapped address)
occurs. This concept, better known as demand paging, improves allocation performance
by deferring complicated kernel bookkeeping tasks until reserved regions of memory are
actually used. Page faults require a special hardware interrupt to handle, and will be dis-
cussed later.

Demand paging leads to multiple measures of process memory consumption. The
amount of reserved memory (also known as working set or virtual size) refers to the sum of
all allocated pages, while the amount of resident memory (also known as resident set or
physical size) refers to the number of pages actually mapped to a system memory. Allocated
memory belonging to unreferenced pages, or pages swapped out of system memory, is not
included in the tally of resident memory. Likewise, on systems that implement demand
paging, the kernel also keeps track of the number of page faults on a per-process basis.

As a result, each call to malloc () may result in multiple system calls and/or inter-
rupts on i386/Linux (a protected-mode virtual memory-based platform), depending on whe-
ther or not the requested allocation will fit into one or more existing heap blocks (pages).
Additionally, a standard library does not place strict requirements on the alignment or slack
space of allocated memory blocks. The only alignment requirement malloc () stipulates
is that it will return an address aligned to the host architecture’s word size [3]. Memory
fragmentation and paging also differ from one implementation to another, making it diffi-
cult to predict the expense of calling realloc (). In the worst case, realloc () may
have to physically relocate memory by reading chunks of memory from one location and
writing to another.

In addition to practical work on memory allocation, there have been multiple academic
papers published in this area, for example [4—7], discussing allocation schemes and memory
models for real-time Java [4], bare-bones machine memory allocation and scheduling [5],
allocation across space, time and a characterization of memory usage [6], and attempting
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defragmentation [7]. They have high research value on their own, but none of them addres-
ses actual implementation in commercial operating systems that are used or can be used in
real-time applications.

1.3. Addressing the Problems

In general, all platforms provide more advanced techniques for managing memory
than the standard library offers. Clearly, the C standard library allocates memory with porta-
bility, rather than performance in mind. High performance applications often allocate
buffers with slack space (e.g., if a buffer must store 13 elements, to allocate enough space to
store 16 before requiring re-allocation) to satisfy data alignment requirements and reduce
fragmentation. Given the added expense of system calls and protected mode switches, some
applications even avoid the standard library’s memory management system altogether,
in favor of more sophisticated libraries and lower-level routines.

Rather than finding a way to make the standard library more efficient, the focus should
be on the development of new and/or the modification of existing algorithms to improve
memory management performance and creating the software necessary to evaluate perfor-
mance. Principally, the algorithms should address the key hardware and software concepts
discussed above; this could involve directly interfacing with kernel memory functions,
reducing the number of required system calls, and researching placement schemes more
advanced than the fragmentation prone “first-fit.”

The objective of this paper is to conduct experiments to study selected currently used
memory allocation mechanisms in the most common operating systems, and compare them
with a real-time kernel. The rest of the paper is structured as follows. First, the research
methodology is explained briefly, which is followed by the description of actual experi-
ments and the analysis of results. The paper ends with a conclusion.

2. Methodology

Successful real-time memory management requires algorithms that have consistent
timing properties and that ensure determinism. The goal of any real-time software is to meet
time deadlines; in the context of memory management, this is achievable by focusing on
two key concepts. The first is how well the algorithm deals with simultaneous allocation
requests, measured in terms of wait time and synchronization overhead. Measuring thread
efficiency is straightforward, as it only requires thread-level timing.

The second factor affecting real-time memory management relates to the amount
of run-time and storage an allocator uses establishing optimal address space distribution.
Measuring location-based performance requires the spatial analysis of allocated blocks
of memory, the empty spaces in-between and the size and structure of record keeping data.
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2.1. General Timing Considerations

Timing is a fundamental part of any performance analysis software, however, the most
general purpose high-precision timers measure the wrong thing. While the timers provide
adequate resolution, their drawback is that they relate to the system clock or the CPU clock
rate. This makes them inappropriate for measuring the performance of a multi-tasking pro-
gram; the ideal solution involves communicating with the scheduler.

In operating systems, usually scheduling has to do with the distribution of CPU and I/O
resources on a per-process basis, with threads using the allocated CPU time for concurrent
operations. However, in the real-time OS, the usual process/thread paradigm is modified.
VxWorks schedules tasks and threads rather than processes. Thus, it makes more sense to
measure performance on a per-thread basis. The benefits are two-fold: the amount of CPU
time a thread receives is measurable in most OS’s, and modern hardware architectures are
shifting from powerful single-core processors to lightweight multi-core processors.

Traditionally, malloc () and alternatives were developed before parallel computing
became the norm, and thread-safety was never a major factor. Whether or not malloc () is
safe in a multi-threaded application varies and some platforms even require compiling and
linking a program against a special thread-safe version of the C standard library [1]. In most
thread-safe implementations, locking is used as a safeguard mechanism. However, there are
special algorithms designed to eliminate the contention for memory addresses, such that
locking is not required. Timing at the thread-level will ensure fair performance evaluation
of thread-optimized algorithms vs. traditional lock-based algorithms.

2.2. Evaluating Address Space Distribution

The efficiency of a memory manager depends on more than just the amount of time to
acquire and release memory resources. Other factors include fragmentation and unusable
space, and the frequency with which resizing a block of memory requires moving the entire
block. Depending on the application, CPU or I/O time may be less important than the effec-
tive utilization of all memory. Even when performance is of major concern, reducing
the number of required relocations should directly translate to a reduction in CPU runtime.

To evaluate these performance criteria, the test suite should perform record keeping of
its own on a per-memory block basis including extra information pertinent to performance
evaluation. While memory allocators already perform internal record keeping, implementa-
tions such as ANSI C do so non-extensibly. The only reasonable way to achieve the goals
above is to duplicate said functionality.

2.3. Design of a Benchmark

The performance evaluation software must be able to identify holes in the allocated
address space, and calculate the number of times a block of memory moved to satisfy allo-
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cation requests. Because many virtual memory architectures use paging, the reallocation
of blocks with sizes that are not multiples of the system’s page size(s) will be an important
part of the test procedure. Last, it must also test the performance of memory allocation algo-
rithms in threaded and non-threaded access patterns, using various block sizes. Optional
performance tests could include address space compaction and garbage collection.

Many micro-benchmarking approaches focus on the number of transactions per-
-second using random sequences of allocation. To get a reasonable approximation of
real-world performance using a random sequence of tests requires a very large number
of allocations. Worse, an algorithm cannot be tuned for specific applications when the input
is random. To solve this problem, memory manager projects often instrument applications
and analyze run-time behavior after termination using a profiler to validate performance.

To address embedded systems and make testing multiple memory manager implemen-
tations easier, a tool with a special translation layer has been developed, which mimics the
traditional ANSI C interface for functions such as malloc (), free () and realloc ().
While the interface an application developer sees is nearly identical, the internal translation
layer converts memory requests to the necessary formats for proprietary memory managers.
The developed API is referred to as TLM; TLM is not officially an acronym, but it could
stand for Transaction Logged Malloc, TransLated Malloc, etc.

2.4. CPU Timing in Posix

Adopting the Posix API allows for the unification of measurements [8]. Rather than
measuring the time that has elapsed since some arbitrary instant, Posix provides special
timers known as CPU timers. They represent the total time the OS has spent running
a process or thread. The biggest difference between the elapsed vs. run time approach is that
CPU timers do not include the time a process or thread spends sleeping or waiting for I/O.

Depending on the way thread-safety is implemented in a memory manager, the soft-
ware may have to block (wait) until other threads finish their memory operations. Done
properly, the waiting thread should utilize the lowest overhead locking mechanism possible.
Using Posix CPU timers, that is, measuring the amount of CPU time a memory manager
requires vs. the amount of time an operation takes to complete, gives a good indication of its
suitability in multi-threaded environments.

Table 1
CPU Timers used by TLM

Windows GetThreadTimes () 0.1us

pthread getcpuclockid() 1 Hz*
Linux and VxWorks *Variable,
clock gettime () see: clock getres ()
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Table 1 lists the interfaces TLM uses for thread-level CPU timing. While POSIX ti-
mers are standard in Linux and VxWorks, not all Posix-compliant platforms guarantee their
existence. MacOS X supports only a Posix subset; to perform thread-level timing on
MacOS X requires directly interfacing with the Mach kernel.

3. Timing Experiments

TLM was designed to measure more than raw throughput and execution time, it also
measures memory consumption, thread-level memory activity and can analyze the layout of
allocated memory. The following sections present the results of tests necessary to measure
and analyze the real-time performance characteristics discussed above.

Thread contention arises when multiple threads attempt to modify the state of memory
allocation concurrently. Thus, it is necessary to measure the amount of time a thread spends
sleeping (waiting) using basic per-thread CPU timers. TLM defines the amount of wait time
as follows, where T represents a single thread, T, is the time a thread began, and T,
and T, measure the amounts of time spent in user- and kernel-mode, respectively:

Tlifetime = Tcurrent - Tstart
Twait = Tlifetime - (Tuser + Tkernel)

In a multi-tasking OS, the amount of time a process/thread spends sleeping varies de-
pending on factors such as the number of processes and priorities. While processor load
may cause a sleeping thread to sleep longer, the ratio of time spent executing vs. waiting
over multiple test runs is adequate to analyze a memory allocator’s lock and wait behavior.

In general, a real-time memory allocator must have low wait-time variability and must
bias user-mode time over kernel-mode time. There is no prize for finishing a job early in
real-time applications, but finishing late has serious consequences — real-time algorithms
need to reduce the worst-case expense and aim to stabilize the average case. Likewise, swit-
ching between user-mode and kernel-mode in a real-time application adds significant over-
head, and must be kept to a minimum. Therefore, average wait time and user/kernel-mode
switch frequency are the two most important timing metrics TLM measures.

Formally, an allocator x is more suitable in real-time applications than another alloca-
tor y, if it has consistently shorter wait times and spends less time on kernel-mode opera-
tions. However, many dedicated real-time OS’s have highly customizable schedulers. Thus,
depending on operating system configuration, wait time consistency may play a smaller role
in determining real-time performance than context switch frequency.

The following subsections provide a comprehensive summary of results for some com-
binations of platforms and algorithms supported by TLM. For reasons of space allocation,
all grapahs are placed at the end of this section, after the narrative.

With the exception of VxWorks, all of the graphs below measure four aspects of run-
time behavior. The left graph on the top represents the ratio of kernel- to user-mode execu-
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tion time (smaller is better). The right graph on the top row represents the amount of time
the system’s scheduler suspends each thread — the series is always non-decreasing, apparent
jitter in this graph is the result of kernel-level inaccuracies on some platforms. From left to
right on the second row, the graphs measure user-mode and kernel-mode times respectively.

3.1. Hoard on Mac OS X and Linux

Hoard was one of the first thread-optimized memory allocators on the market, its deve-
lopment is seriously lagging behind newer alternative memory allocators and thus its
performance is consistently several orders of magnitude worse on all platforms [9]. Hoard
performs considerably better on Linux than it does on Mac OS X, in large part due to
its lower kernel overhead (top left graph in Fig. 1 and 2). Sleep time looks very sporadic
on Linux (top right graph in Fig. 2), but comes down to jitter in the Linux kernel’s thread
run-time reporting.

3.2. Jemalloc on Mac OS X, Linux and Windows

Results of running jemalloc [10] for Mac OS X (Fig. 3) exemplify what makes a me-
mory allocator real-time. Extremely low kernel overhead is attributed to leaving allocated
memory empty, which allows demand-paging kernels to defer some operations until me-
mory is first used. User-mode time is linear and wait times are very consistent. Overall
jemalloc is very well suited for real-time applications on this OS.

Jemalloc behaves consistently on Linux (Fig. 4). Jitter in sleep time is due to kernel-
level issues. No official port of jemalloc exists for Windows, so TLM was derived from
a port of jemalloc for use in the Mozilla Firefox browser. Behavior is similar to Mac OS X
and Linux, the step-function like growth in runtime is attributed to granularity and the unu-
sual way that Windows records scheduler history (Fig. 5).

3.3. System Default Allocator: Linux, Windows and VxWorks

Interestingly, the default memory allocators in GNU/Linux and Microsoft Windows
both incur greater kernel overhead allocating 4 KiB blocks than 16 KiB blocks (Fig. 6
and 7). The Visual C++ 2008 allocator (Fig. 7) on Windows does a poor job allocating empty
blocks of memory, and locking behavior (top right graph in Fig. 7) also hinders concurrency.

TLM is unable to distinguish user- from kernel-mode time on VxWorks, and the amo-
unt memory on the test hardware is less than 256 MiB. As such, the test had to be significan-
tly scaled down. The results on the left side of Figure 8 show that VxWorks’ default alloca-
tor achieves better than O(n) overhead when locating free blocks. The right side of Figure 8
shows that kernel-heavy threads in a user-mode real-time process can trip up the real-time
scheduler (eliminating all concurrency). Presently, the only solution for memory allocation
on VxWorks is the default allocator — the results of testing it suggest room for improvement,
and porting jemalloc and other allocators to VxWorks would make sense.
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4. Discussion of Results for All Platforms

Mac OS X is a desktop operating system built on top of Darwin, an open-source kernel

derived from BSD. The Darwin kernel exhibits many characteristics desirable for real-time
computing and its microkernel-like architecture sets it apart from the only true real-
-time operating system (VxWorks) tested. Mac OS X is also the only platform tested
that includes a thread-optimized memory allocator as part of its shipped C standard library.
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Tests show that the default allocator is consistently the best choice on Mac OS X, and sug-
gest that Apple has adopted jemalloc as its default allocator, just as NetBSD and FreeBSD
have. Additionally, it was the only fully 64-bit platform (kernel, C standard library, TLM
binary) tested.

Just as Mac OS X is a separate entity from its kernel, the Linux kernel should not be
mistaken with GNU/Linux. Many different platforms based on the Linux kernel exist, and
its many variations exist to satisfy different computing requirements. TLM focused testing
on the desktop/server platform known as GNU/Linux; it used an SMP variant of the
Linux kernel built with pre-emptive scheduling. Results are not necessarily indicative of
a Linux platform with real-time emphasis, such as Wind River Linux.

In implementing TLM on GNU/Linux, one of TLM’s key components — the ability to
distinguish kernel-mode time from user-mode time at the thread-level — is only possible on
systems running kernel 2.6.26 or newer. For this project, we had to change test hardware
late in the development cycle because the original host could only support a 2.6.25 kernel,
a poor TLM test candidate. Another quirk on the GNU/Linux platform is the interface re-
quired to measure per-process memory consumption. Posix defines getrusage (), to me-
asure CPU runtime and memory consumption per-process. While none of the platforms
tested fully implement getrusage (), GNU/Linux implementation was by far the worst.

Implementing TLM on Microsoft Windows required writing separate code paths for
proprietary APIs; every instance of standard Posix/BSD API calls must be replaced with
their appropriate Win32 analog. Like GNU/Linux, Windows ships with a less-than-ideal
memory allocator implementation. The unofficial port by Mozilla of jemalloc to Windows
provides twice the runtime throughput and a fraction of the memory consumption.

Win32 has simplest interface for querying thread run-time GetThreadTimes ().
Sadly, its returned values are very sporadic, often failing to update the reported user/kernel
run-time for periods as great as 100 ms. On the other hand, Windows keeps track of thread
execution by measuring the number of scheduler intervals a thread spends in user-mode,
kernel-mode or asleep since its creation. Returned values are nothing more than multiplying
the number of said quanta by the scheduler’s time slice, which makes the granularity of
thread execution timing on Win32 many times coarser than other operating systems tested.

VxWorks was the only true real-time platform tested, and the available hardware confi-
guration was the most restrictive. Traditionally, VxWorks only schedules tasks, but offers
an implementation of Posix threads given a specially configured kernel. It was later realized
that VxWorks only provides Posix threads to ease porting existing software to the platform
— WindRiver only exposes its most advanced scheduling features, and presumably only
optimizes its memory allocation algorithms for its native task-based APIs.

The unusual results of testing on VxWorks may be attributed to a combination of
unique hardware and software limitations (particularly the number of processors) and
non-native implementation of concurrent job scheduling. It would appear that the default
memory allocator that ships with VxWorks is kernel-bound, and locks acquired by the
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kernel can affect the system’s ability to concurrently schedule threads created by user-mode
processes. VxWorks will almost certainly benefit from a working port of a proper thread-
optimized memory allocator such as jemalloc.

5. Conclusion

The goal of this project was to evaluate memory allocation performance with applica-
tion to real-time systems. This was meant to be accomplished by producing and/or modify-
ing existing memory allocation algorithms. It quickly became apparent that theory and prac-
tice were two different things. In researching existing allocation solutions, it was determi-
ned that traditional test methodology (given the vast majority of published results) was
inadequate to solve many of the most important questions related to real-time viability.

Had anyone analyzed in detail the user and kernel-mode penalties for synchronizing
memory allocation requests? Had the behavior of threads within concurrent systems been
modeled? Had the differences between real-time kernel design and desktop kernels been
considered? Overwhelmingly, the answer to each of these questions kept coming back: no.

How could anyone realistically hope to improve upon years of memory allocation wis-
dom if the questions asked were fundamentally wrong — thus, the focus shifted from
adapting memory allocation algorithms based on common wisdom to developing new tools
necessary to test the extreme limits of accepted wisdom.

The poor kernel-level implementation of thread time measurement on Windows means
that the test methodology used for VxWorks, Linux and Mac OS X must be re-evaluated
to produce useful results on Windows. To accommodate the limited memory space on
the VxWorks test hardware, some of the tests had to be scaled back. VxWorks testing also
brought up the issue of the number of processors a system has to work with.

Last, the issue of an application’s compiled architecture vs. the kernel’s native archi-
tecture arose in tests on Windows and Linux. The transition from x86 to x86-64 is an ongo-
ing process, and consequently all major operating systems currently allow 32-bit x86 in-
struction set applications to run on top of an x86-64 kernel. Win64 requires a translation
layer that converts Win32 API calls to Win64 to accomplish this, which has a measurable
impact on performance.

Less is known about how Linux accomplishes this, but in both cases, using a 64-bit
native word size inevitably increases memory consumption over 32-bit. To get the most
accurate measure of performance in terms of runtime and memory consumption, TLM
should test user-space applications that use the same architecture as the underlying kernel.
With this in mind, considering the prevalence of 32-bit software running on 64-bit ker-
nels, the results of mixed-mode execution are still very relevant.

In summary, rather than benchmarking raw throughput, or time to complete a set of
tasks, the focus of this research has been on measuring allocator behavior at the absolute
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lowest-level possible. In effect, TLM has evolved from a simple benchmark into a full-
fledged memory allocation profiler and has answered many of the questions listed above,
while creating several new questions for future research. With continued work, TLM will
undoubtedly lead to improved user-space memory allocation for real-time platforms.
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