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Shape Optimization of a Flywheel

1. Introduction

A flywheel is quite a simple tool (if it comes for idea of working), used for storing
energy. It is stored in the form of kinetic energy of a rotary mass. Thus, the maximum energy
stored in a flywheel is given by:

Ekmax =
1
2

Jω
2
max (1)

where:
J – moment of inertia of flywheel,

ωmax – maximum rotary speed,
Ekmax – maximum stored energy.

Fig. 1. Schematic diagram of a commercial flywheel system [10]
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However, for practical reasons flywheel systems (Fig. 1) are not completely discharged,
it is not cost-effective due to the existence of large losses during the ramp-up from zero
velocity.

Typically they are discharged to a certain minimum value ωmin, selected such that the
ωmin
ωmax

= s = 0.25 [5] – this selection of minimum speed value provides use about 94% of
maximum stored energy Ekmax. So the maximum power delivered to the receiver can be
expressed as:

∆Ekmax =
1
2

J(ω2
max−ω

2
min) =

1
2

Jω
2
max(1− s2) (2)

Of course, this situation depicted by equation (2) is quite idealized. In reality, one must
take into account the losses of energy occurring in the system. They are caused by a number
of factors: friction in bearings, aerodynamic friction, inducing forces in the coils as well as
the efficiency of the power converter, etc. In this case, equation (2) should be supplemented
by an efficiency factor η (0 < η < 1).

∆Ekmax =
1
2

ηJω
2
max(1− s2) (3)

Fig. 2. Schematic flow of energy in a flywheel accumulator [10]

On the basis of the above depending for the energy accumulated and transmitted to the
load can be seen that in order to increase it, can increase the flywheel moment of inertia or
increase rotary speed. It is also seen that increasing the speed gives a much higher increase in
the energy accumulated, as energy is proportional to the square of speed, and depends only
linearly to moment of inertia.

That is why trying to design flywheels for high speed (as far as possible, not always
possible to obtain a sufficiently high turnover due to occur over time stress), which allows
to obtain the same amount of energy accumulated in smaller geometric dimensions, lower
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weight. Describing the size of the ratio of the maximum accumulated energy to volume (mass)
is called the energy density (specific energy) and is given by the volume:

ek,v =
Ekmax

V
=

Jω2
max

2
∫

dV
(4)

and for mass:

ek,m =
Ekmax

m
=

Jω2
max

2ρ
∫

dV
(5)

where:
ek,v – energy density,
ek,m – specific energy,

V – volume of flywheel,
m – mass of flywheel.

The maximum specific energy can also be expressed using the ratio of the maximum
stress resistance and density of the material from which the rotor is done. Then ek,mis directly
proportional to it with an appropriate scaling factor K, which depends only on the shape of
the flywheel (equation (6)).

êk,m = K
σθmax

ρ
, êk,v = Kσθmax (6)

Tables of coefficients for the different shapes can be found for example in [5].

Providing maximum energy density of the battery makes it possible to minimize the
dimensions and weight. Small size and weight allow, in addition to reducing the space re-
quired for the batteries and e.g. placing a battery in vehicles. What is already being done by
manufacturers such as Porsche, Jaguar and Formula 1 racing cars.

The parameters presented here (maximum accumulated kinetic energy, moment of iner-
tia, energy density) are essential to determine the quality of the flywheel as the energy storage
battery. During the design process, you can try to optimize them. The evaluation criterion can
be formulated in various ways, this may be the optimization of one selected parameter or
multi-criteria optimization seeking to choose the best combination of all parameters.

In this work will be presented approach to maximize the moment of inertia of the fly-
wheel and at the same time increasing energy density. Imposed will be appropriate limitations
related to the strength of the material from which it is made. Calculations are performed for
the construction of the rotor in the shape of the pierced cylinder (shown in Fig. 3). For such
a shape can be obtained analytical depending on stresses arising during work time.
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Fig. 3. Top view and cross-section of the flywheel in the shape of a cylinder

In the case under consideration the shape of the moment of inertia depends linearly on
the height, but specific energy ek,m does not depend from it. Therefore, you can pretty well
compare to what size the size of the optimal values take on the plane R1−R2. This is shown
in the drawing (Fig. 4). It may be noted here that these are largely conflicting requirements,
the maximum moment of inertia is achieved when the shape is similar to a fully filled roller,
while the maximum power density is obtained close to the ideal shape of the ring. These
conflicting requirements suggest the use of multi-criteria optimization to determine the best
shape.

Fig. 4. Comparison of the formation of the moment of inertia (left) and energy density ek,m depending
on the radii R1 and R2
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2. Moment of inertia

The moment of inertia is a measure of inertia of the body in rotation. The bigger it is, the
harder the body is to disperse or stop. As it has been mentioned in the preceding paragraph,
moment of inertia has an influence on kinetic energy accumulated in the rotating block.

J =
∫ ∫ ∫

(x2 + y2)ρ(x,y,z)dxdydz (7)

where ρ(x,y,z) – material density in point (x,y,z).
In practice, however, it can be assumed that the entire volume of the solid material

density is constant. Additionally you can use designation x2 +y2 = r2 (square of the distance
from the axis of rotation). Then, the equation (7) takes the simpler form (8):

J =
∫

r2
ρdV =

∫
r2dm (8)

Fig. 5. Half of the sample cross-section shape of the flywheel

In the case of less general, when the rotational body is symmetrical relative to the radius,
as shown in Figure 5, and such is the form used by the majority of practical flywheels, the
moment of inertia takes form:

JS = 2ρπ

R2∫
R2

r3h(r)dr (9)

where:
h(r) – section height as a function of distance from the axis of rotation,

R1,R2 – respectively initial and final distance of cross-section from axis of rotation.
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In the case of the considered shape of the flywheel, the expression on their moment of
inertia takes the already much simpler form:

JC =
1
2

ρπH(R2
2−R4

1) (10)

Notation as shown on Figure 3.

3. Stresses

During operation of the flywheel, as a result of the rotational speed, and more specifically
the centrifugal forces occurring, stresses arise in the rotor. There are two types of stress there
occurs:

– tangential stresses σθ ,
– radial stresses σr.

a) b)

Fig. 6. Propagation of stress in the flywheel

The mechanism of their formation and the forces that cause them are marked on the
Figure 6. On the basis of it, the formula of the centrifugal force can be presented:

FC = ρhr2
ω

2dφdr (11)

where h = h(r) is the thickness of the flywheel depending on the distance from the axis of
rotation.

And comparing the sum of the forces on the axis of a ”vertical” in the Figure 6b to zero,
the differential equation is obtained that describes the impact of stress on the selected section
of material [1]:

ρhr2dφdrω
2 +(r+dr)(σrh+

d
dr

(σrh)dr)dφh−2σθ drhsin
dφ

2
−σrrdφh = 0 (12)
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Given that there is equality sinα ≈ α for small α and dividing equation (12) by dφ is
obtained a simplified form of the equation:

dσr

dr
hr+h(σr−σθ )−hr2

ω
2
ρ = 0 (13)

In addition, if we apply the substitution Φ(r) = σrhr, and using depending on:
σr =

Φ(r)
hr

σθ =
1
h

dΦ(r)
dr

ρω2r2

(14)

equation is obtained with only one unknown Φ(r) (instead of two σr, σθ ).

r2 d2Φ

dr2 + r
dΦ

dr
−Φ +(3+ν)ρω

2hr3− r
h

dh
dr

(r
dΦ

dr
−νΦ) = 0 (15)

In general, for any h(r), the analytical solution of this equation does not exist. Only in the
case where h(r) = h = const it can give an explicit analytical solution (if the last component
is reset to the left side of the equation (15) because it is multiplied by the derivative dh(r)/dr)
for σr and σθ . These equations (16) are presented below, along with a comment. However,
for shapes other than the cylinder is usually used Finite Element analysis. This approach is
shown for example in [1, 2].

The solutions of equation (15) are presented in the work [3] and [4], they were presented
for the case of isotropic materials, namely those where there is no difference in physical prop-
erties of the material regardless of the direction of measurement (such as steel or aluminum):

σir =
3+ν

8
ρω2

(
R2

2 +R2
1−

R2
1R2

2
r2 − r2

)
σiθ =

3+ν

8
ρω2

(
R2

2 +R2
1 +

R2
1R2

2
r2 −

1+3ν

3+ν

)
r2

(16)

As seen from the given equations (16), the resulting stress does not depend on the thickness
of the cylinder, but only the rays from the internal and external.

Calculations for anisotropic materials (disparities physical properties depending on the
direction of measurement) are usually more complex and are carried out in the Finite Element
Method. Therefore, they will not be carried out here. This information can be found in the
works: [4, 5, 6].

Of course, the flywheel must withstand the maximum resulting stress (the maximum al-
lowable stresses for the materials selected shows), should therefore be determined maximums
specified functions.
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In the case of isotropic materials find maximum analytical methods are quite simple and
maximum points are as follows:rir,max =

√
R1R2

riθ ,max = R1

(17)

In Figure 7 are examples of courses and radial shear stress for isotropic materials.
Additionally, the process flow presented in the maximum stress depending on the ratio
R1/R2 = λ and the original set R1.

Fig. 7. Exemplary waveforms of radial stress (left) and tangential to the flywheel in the shape of
a cylinder made of steel (isotropic). The bold line is the graph of σmax(λ )

4. Formulation of optimization problem

As indicated in the introduction, the task of optimizing the shape of the flywheel can
be formulated in various ways. You can only maximize the moment of inertia of the relevant
restrictions imposed on emerging during work stress and forces that can occur in the bearings
due to the imbalance of the rotor as well as try to optimize the energy density at the same
limitations, or create a multi-criteria optimization task of maximizing the moment of inertia
(energy density) and minimize the stress occurring.

In this work it was decided to first of these approaches. So, to maximize the moment of
inertia, the flywheel in the shape of a cylinder:

max
R1,R2,H

{
1
2

ρπH(R4
2−R4

1)

}
(18)

As well as specific energy, for the cylinder:

max
R1,R2,H

{
1
4

ω
2
max(R

2
2 +R2

1)

}
(19)

Geometric constraints were imposed on the dimensions related to eliminate the possibility
of setting the values so that the inner radius is greater than the outer radius. Also with the
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limitations associated with the maximum possible space activities. They take the form:Hmin ≤ H ≤ Hmax

Rmin ≤ R1 ≤ R2 ≤ Rmax

(20)

Limitations on stress take the form of:σr,max ≤ σ̄r,max

σθ ,max ≤ σ̄θ ,max

(21)

As already mentioned in section 3 of the maximum stress can be determined in a simple
manner for isotropic materials (from equations (16) and (17)):σ̄r,max =

3+ν

8 ρω2
max(R

2
1 +R2

2−2R1R2)

σ̄θ ,max =
3+ν

8 ρω2
max(2R2

2 +2 1−ν

3+ν
R2

1)
(22)

From the above equations can be determined by an equation showing explicitly the depen-
dence R2(R1) curves limiting the feasible solutions.

Rσr
2 = R1 +

√
σ̄r,max

3+ν
8 ρω2

max

Rσθ

2 =

√
σ̄θ ,max

3+ν
4 ρω2

max
− 1−ν

3+ν
R2

1

(23)

For a more complete account of all the conditions to be met by the actual layout must
take into account the reaction force generated in the bearings due to rotor unbalance. These
forces can not be greater than the maximum strength of the applied bearings. Therefore, you
should add another restriction:

FR ≤ FR,max (24)

The reaction forces in the bearings may be calculated for example as in [7].

In the case described above, optimization was performed for a fixed rotational speed
of the rotor. May also be considered optimization task where one of the decision variable is
the rotational speed (with the proviso of course, from the top). Then it may be that a better
solution would be to build a slower flywheel with a greater moment of inertia, thus a smaller
stress in the present. You must also change the task of optimizing the moment of inertia for
the task of minimizing the kinetic energy:

max
R1,R2,H,ωmax

{
1
4

ω
2
maxρπH(R4

2−R4
1)

}
(25)
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In addition to limiting the top speed, the rest remains unchanged restrictions.
Since in the case considered the shape of these requirements are quite large extent con-

flicting. So to the final outcome of it was used to balance the multi-criteria optimization
algorithm, maximizing vector:

F(H,R1,R2) = [F1(H,R1,R2),F2(H,R1,R2)]
T (26)

where:
F1 – moment of inertia,
F2 – specific energy.

5. Optimization results

To solve the task was used to optimize the package MATLAB [8].
In the first place has been designated set in the plane of criteria F1 − F2, which can

be achieved with the constraints imposed on the job. It has been illustrated in Figure 8. The
collection has been achieved marked by pointing, while the bold line has been selected Pareto
set, ie a set dominated solutions (a set whose elements satisfying relationship P = {x ∈U :
∀y∈U [F(y)≥F(x)⇒ x= y]}, where U is a set of parameters, which make the optimization).
Material parameters were adopted in accordance with the Table 1, the other parameters are
shown in Table 2.

Fig. 8. Space criteria of optimal points marked
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Table 1
Used properties of selected materials [4]

Material ρ [kg/m3] Eθ [GPa] Er [GPA] σθ [MPa] σr [MPa] ek,m [kJ/kg]

Steel 7800 200 200 800 800 51

Aluminum 2700 70 70 500 500 93

Glass fiber 2000 45 5 1000 40 250

Glass fiber 1580 300 5 750 25 237

Table 2
The values of the parameters adopted

ωmax [rpm] Hmax [m] Rmax [m] FR,max [kN]

10 000 0,2 0,2 3

Finding the optimal solution was made by scalarization by distance, as described for
example in [9]. It involves the determination of the utopian, whose coordinates satisfy the
relation:

Fu
i = maxx ∈U{Fi(x)} (27)

This is usually the point does not belong to the set attainable in the criteria, so it was in
this case (red point in figure (8)) where the point was worth:

Fu = [3,920720,863]T (28)

The point considered as optimal point from the set of Pareto is located at a minimum
distance from the point of utopian. Determination of this point depends on the selected metric.
The study has been calculated for two cases:

– Euclidean metrics – Fe = [1.569519.4585]T (green point on the graph),
– Chebyshev metrics – Fc = [1.776019.0768]T (black point on the graph).

In the space of decision parameters correspond to the points:

– Xe = [0.20000.17600.2000]T mmm,
– Xc = [0.20000.17200.2000]T mmm.

Analogous calculations were performed for the situation where an additional de-
cision variable was the maximum speed reached by the flywheel. Upper bound was
ωmax = 40000 rpm. Again, was designated collection available in the parameter space and
a set of Pareto and utopian point (8).
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Fig. 9. Space criteria of optimal points marked

In this case, the utopian point was:

Fu = [8599,187,7]T (29)

The optimal points in both metrics are as follows:

– Fe = [8593.445.0]T (green point on the graph),
– Fc = [8570.546.4]T (black point on the graph).

In the space of decision parameters correspond to the points:

– Xe = [0.20.0320.22094]T mmmrev./s,
– Xc = [0.20.0480.22094]T mmmrev./s.

6. Summary

This work presents an analytical approach to the problem of optimizing the shape of
the flywheel. This approach can significantly reduce the computational complexity of the
solution (e.g., as compared to the Finite Element Method), but is suitable for use only for the
shape of a simple geometry.

The method of selection of the optimal solution takes into account two parameters: the
moment of inertia (stored energy) and energy density, none of them was identified as more



Shape Optimization of a Flywheel 35

important. Of course, you can choose a different method of scalarization, giving to one of the
considered parameters more weight, which may lead to a different solution.
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