Confronting theoretical predictions with experimental data; fitting strategy for multi-dimensional distributions

Authors

  • Tomasz Przedziński The Faculty of Physics, Astronomy and Applied Computer Science, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland
  • Pablo Roig Departamento de Física, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México D.F. 01000, México
  • Olga Shekhovtsova Kharkov Institute of Physics and Technology 61108, Akademicheskaya,1, Kharkov, Ukraine; Institute of Nuclear Physics, PAN, Kraków, ul. Radzikowskiego 152, Poland
  • Zbigniew Wąs Institute of Nuclear Physics, PAN, Kraków, ul. Radzikowskiego 152, Poland
  • Jakub Zaremba Institute of Nuclear Physics, PAN, Kraków, ul. Radzikowskiego 152, Poland

DOI:

https://doi.org/10.7494/csci.2015.16.1.17

Keywords:

RChL, Tauola, hadronic currents, fitting strategies, multi-dimensional fits

Abstract

After developing a Resonance Chiral Lagrangian (RχL) model to describe hadronic τ lepton decays [18], the model was confronted with experimental data. This was accomplished using a fitting framework which was developed to take into account the complexity of the model and to ensure the numerical stability for the algorithms used in the fitting. Since the model used in the fit contained 15 parameters and there were only three 1-dimensional distributions available, we could expect multiple local minima or even whole regions of equal potential to appear. Our methods had to thoroughly explore the whole parameter space and ensure, as well as possible, that the result is a global minimum. This paper is focused on the technical aspects of the fitting strategy used. The first approach was based on re-weighting algorithm published in [17] and produced results in around two weeks. Later approach, with improved theoretical model and simple parallelization algorithm based on Inter-Process Communication (IPC) methods of UNIX system, reduced computation time down to 2-3 days. Additional approximations were introduced to the model decreasing time to obtain the preliminary results down to 8 hours. This allowed to better validate the results leading to a more robust analysis published in [12].

Downloads

Download data is not yet available.

References

Actis S., et al.: Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data. Eur. Phys. J., vol. C66, pp. 585–686, 2010. http://dx.doi.org/10.1140/epjc/s10052-010-1251-4.

Antcheva I., Ballintijn M., Bellenot B., Biskup M., Brun R., et al.: ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun., vol. 180, pp. 2499–2512, 2009. http://dx.doi.org/10.1016/j.cpc.2009.08.005.

Asner D., et al.: Hadronic structure in the decay tau- –> tau-neutrino pi- pi0 pi0 and the sign of the tau-neutrino helicity. In: Phys.Rev., vol. D61, p. 012002, 2000. URL http://dx.doi.org/10.1103/PhysRevD.61.012002.

Aubert B., et al.: The BaBar detector. Nucl. Instrum. Meth., vol. A479, pp. 1–116, 2002. http://dx.doi.org/10.1016/S0168-9002(01)02012-5.

Banerjee S., Kalinowski J., Kotlarski W., Przedzinski T., Was Z.: Ascertaining the spin for new resonances decaying into tau+ tau- at Hadron Colliders. Eur. Phys. J., vol. C73, p. 2313, 2013. http://dx.doi.org/10.1140/epjc/s10052-013-2313-1.

Ecker G., Gasser J., Pich A., de Rafael E.: The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys., vol. B321, p. 311, 1989. http://dx.doi.org/10.1016/0550-3213(89)90346-5.

Jadach S., Kuhn J. H., Was Z.: TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons. Comput. Phys. Commun., vol. 64, pp. 275–299, 1990. http://dx.doi.org/10.1016/0010-4655(91)90038-M.

James F., Roos M.: Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations. Comput. Phys. Commun., vol. 10, pp. 343–367, 1975. http://dx.doi.org/10.1016/0010-4655(75)90039-9.

Kubota Y., et al.: The CLEO-II detector. Nucl. Instrum. Meth., vol. A320, pp. 66–113, 1992. http://dx.doi.org/10.1016/0168-9002(92)90770-5.

Nugent I., Przedzinski T., Roig P., Shekhovtsova O., Was Z.: Resonance chiral Lagrangian currents and experimental data for τ− → π− π- π+ ντ. In: Phys.Rev., vol. D88(9), p. 093012, 2013. URL http://dx.doi.org/10.1103/PhysRevD.88.093012.

Nugent I. M. [BaBar Collaboration]: Invariant mass spectra of τ− → h− h− h+ ν decays, Nucl. Phys. Proc. Suppl. 253–255, 38 (2014) [arXiv:1301.7105 [hep-ex]].

Olive K., et al.: Review of Particle Physics. Chin. Phys., vol. C38, p. 090001, 2014. http://dx.doi.org/10.1088/1674-1137/38/9/090001.

Pich A.: Precision Tau Physics. Prog. Part. Nucl. Phys., vol. 75, pp. 41–85, 2014. http://dx.doi.org/10.1016/j.ppnp.2013.11.002.

Przedzinski T.: Test of influence of retabulation method on fitting convergence, 2011.

Shekhovtsova O., Nugent I., Przedzinski T., Roig P., Was Z.: RChL currents in Tauola: implementation and fit parameters. Nucl. Phys. Proc. Suppl., 253–255, pp. 73–76, 2014. UAB-FT-727 http://dx.doi.org/10.1016/j.nuclphysbps.2014.09.018

Shekhovtsova O., Przedzinski T., Roig P., Was Z.: Resonance chiral Lagrangian currents and τ decay Monte Carlo. Phys. Rev., vol. D86, p. 113008, 2012. http://dx.doi.org/10.1103/PhysRevD.86.113008.

’t Hooft G.: A Planar Diagram Theory for Strong Interactions. Nucl. Phys., vol. B72, p. 461, 1974. http://dx.doi.org/10.1016/0550-3213(74)90154-0.

Verkerke W., Kirkby D. P.: The RooFit toolkit for data modeling. eConf, vol. C0303241, p. MOLT007, 2003.

Witten E.: Baryons in the 1/n Expansion. Nucl. Phys., vol. B160, p. 57, 1979. http://dx.doi.org/10.1016/0550-3213(79)90232-3.

World LHC Computing Grid.

Downloads

Published

2015-02-11

How to Cite

Przedziński, T., Roig, P., Shekhovtsova, O., Wąs, Z., & Zaremba, J. (2015). Confronting theoretical predictions with experimental data; fitting strategy for multi-dimensional distributions. Computer Science, 16(1), 17. https://doi.org/10.7494/csci.2015.16.1.17

Issue

Section

Articles