COMPUTER SCIENCE e VOL. 12 e 2011

MAREK KASZTELNIK*, MARIAN BUBAK***

GRID RESOURCE REGISTRY — ABSTRACT LAYER
FOR COMPUTATIONAL RESOURCES

The growing number of resources available to researchers in the e-Science domain has opened
new possibilities for constructing complex scientific applications while at the same time
introducing new requirements for tools which assist developers in creating such applications.
This paper discusses the problems of rapid application development, the use of distributed
resources and a uniform approach to resource registration, discovery and access. It presents
the Grid Resource Registry, which delivers an abstract layer for computational resources.
The Registry is a central place where developers may search for available services and from
which the execution engine receives technical specifications of services. The Registry is used
throughout the lifetime of the e-science application, starting with application design, through
implementation to execution.

Keywords: e-science, collaborative applications, distributed applications, resource discovery,
registry, common information space

GRID RESOURCE REGISTRY - ZUNIFIKOWANY DOSTEP
DO ZASOBOW OBLICZENIOWYCH

Rosnaca liczba zasobéw dostepnych dla naukowca z jednej strony otworzyla nowe mozli-
wosci w konstruowaniu ztozonych aplikacji naukowych, a z drugiej przyniosta dodatkowe
wymagania dla narzedzi wspierajacych proces tworzenia oraz uruchamiania takich aplikacji.
W artykule przedstawiono wyzwania zwiazane z szybkim wytwarzaniem aplikacji naukowych,
ktére wykorzystuja rozproszone zasoby oraz zwiazane z nimi trudnosci wynikajace z reje-
strowania, wyszukiwania i wywolywania zasobéw uzywanych przez aplikacje. Rozwazania
przedstawiono na przykladzie Grid Resource Registry — centralnego rejestru, ktéry dostar-
cza abstrakcyjnego opisu rozproszonych zasobéw, dzieki czemu w znaczacy sposéb proces
wytwarzania oraz uruchamiania aplikacji naukowych moze zosta¢ uproszczony.

Stowa kluczowe: e-science, kolaboratywne tworzenie aplikacji, aplikacje rozproszone, odnaj-
dywanie zasobéw, rejestr, wspolna przestrzen danych

* AGH University of Science and Technology, ACC Cyfronet AGH, ul. Nawojki 11, 30-950
Krakow, Poland, m.kasztelnik@cyfronet.pl

** AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics,
IT and Electronics, Department of Computer Science, al. A. Mickiewicza 30, 30-059 Krakow,
Poland, bubak@agh.edu.pl

33

34 M. Kasztelnik, M. Bubak

1. Introduction

The nature and needs of e-science necessitate rapid development of applications which
addresses specific problems. To fulfill this requirement, applications are built from
preexisting computational blocks, such as libraries or distributed resources available
online [7][9]. A single application may comprise various technologies implemented in
many frameworks. Each of these technologies has different characteristics (such as
statefulness or lack of it). Thus, the developer should always choose the most suitable
technology for implementing a particular service.

The process of creating applications which use distributed computational re-
sources is complicated by several issues. The first issue concerns communication be-
tween the end user and the application developer. In most cases there are many
differences concerning the way in which the user understands application functionali-
ty and the way it is implemented by the developer. Another problem affects libraries
and computational resources used in application development. There is no central
repository which can be searched (in a user-friendly way) for computational blocks
that fulfill developer needs, along with descriptions and additional functional (e.g.
availability) or nonfunctional (e.g license, SLA) specifications. Furthermore, the na-
ture of the distributed environment where resources are installed introduces additional
complexity related to network, software and hardware availability. Last but not least,
there is the issue of technical complexity of applications which reuse existing compu-
tational resources. As the number of available technologies grows the developer has
to spend a significant amount of time mastering new technologies instead of imple-
menting user needs. Furthermore, using different frameworks in a single application
often leads to incompatibilities between libraries and configuration issues.

In light of the problems presented above, there is a need for a module which
would enable the application developer to query for and manage information about
distributed computational resources. In this paper we present a customized registry
called the Grid Resource Registry (GRR) and focus on cooperation between different
groups of users during application development, discovery, registration and execu-
tion on distributed computational resources. The key scientific objective of our work
focuses on ensuring simplicity of e-science application development and on a novel
approach to uniform resource description and access.

The next section presents an overview of existing solutions for resource discovery
and for simplifying the process of application development. Sections 3 and 4 describe
requirements applicable to our registry in the scope of the ViroLab [5] and Gredia [16]
projects as well as the abstraction used in this solution. The proposed architecture
of our system (implementing the presented assumptions) is described in section 5.
We also present an application development case study (section 6). Finally, section 7
presents a summary and a discussion of planned improvements to the repository.

Grid resource registry — abstract layer for computational resources 35

2. Related work

The issue of rapid application development is intimately tied with the Software as a
Service (SaaS) paradigm, which has been gaining popularity over the recent years. It
should therefore come as no surprise that many interesting ideas and systems have
already been proposed in this context.

Searching for information about distributed computational resources is one of
the most time-consuming steps in the development process. The Universal Descrip-
tion, Discovery and Integration registry (UDDI registry) [19] addresses this need by
enabling users to store and query business information about service providers. The
standard has many implementations delivered by various companies such as IBM,
BEA, HP, Oracle and Microsoft. In addition to commercial products, there are also
many open-source implementations, including Apache jUDDI [8] and Grimoires [18].
UDDI should therefore be considered a popular standard for storing information about
services. Unfortunately, most UDDI installations are internal to commercial organi-
zations (and usually hold only information on the organization’s resources) — thus, it
is not possible to search for and reuse such information outside a given organizational
unit. Another relative disadvantage is the lack of semantic information about service
input and output. As a result, the developer has to search for such information manu-
ally, e.g. by browsing service WSDL files. Moreover, this solution only supports plain
web services.

Feta [13] goes further by enabling users to search for information using complex
queries, with constraints applied to input and output parameters as well as to service
behavior. Owing to integration with the Taverna workflow composition system [17] it
is a powerful environment, facilitating fast workflow development. It is not, however,
devoid of drawbacks as Taverna only supports web services. Another issue related
to Feta is its preferred methodology of application development — namely, workflow
composition. This approach enables users with limited computer skills to compose
simple applications, but it also introduces problems related to managing complex
workflows with if and loop conditions, and data type conversions.

The process of application development can be simplified even further by deliv-
ering an environment capable of composing applications in an automatic way. The
user only defines input parameters and the expected result format while the system
locates computational resources which can be used to produce the requested result.
Examples of such systems are proposed in [4] and [12].

The challenge of storing descriptions of computational resources in one place is
also addressed by BioCatalogue [3], EMBRACE [6], SeekDa [20] and Distributed Grid
Resource Registry Meta-Service [10] projects. These registries focus on registering and
querying information about web services. SeekDa aims to publish a one-stop service
marketplace, enabling service providers to sell computational resources.

The presented solutions, despite many advantages, do not fulfill all the require-
ments of e-science research teams: specifically, they do not address support for col-
laborative application development and access to different technologies in a uniform

36 M. Kasztelnik, M. Bubak

way. Furthermore, they only allow users to search for specific installations of a given
service. There is no abstract layer of distributed computational resource description
to dynamically locate the best (and working) service instance in the application exe-
cution phase.

3. Identification of challenges

Taking into account the advantages and drawbacks observed in existing solutions we
have decided to design a new registry which helps develop collaborative applications.
The premise of our system is to allow researchers to define requirements for the
application in an easy way, while the developer — by using existing computational
resources — delivers the application in a short period of time. Furthermore, the registry
has to include an abstract layer of resource descriptions and enable development of
applications using this layer. The mapping between abstract and actual resources
(installed on a remote server) should be made during application execution, with
scheduling and optimization algorithms applied to select the best available instance
when the application is run.

o Xo :Ol)
Domain Application Resource
expert developer provider

~ Implement domain

expert requirement
- Use found concepts
- Browse registered resources,

- Create compuational
resources

- Register them into Grid

Resource Registry

- Define application
requirement

- Find concepts using

ontology browser

C New application)

Fig. 1. The process of collaborative e-science application development requires involvement

on many actors. We have identified three groups of users. The first one — domain experts — de-

fines application requirements. The second one — application developers — implements the
application using resources delivered by third user group — resource providers

The requirements for our system are based on experience from collaboration with
modern e-science research teams consisting of three groups of users (see Fig. 1). The
first group includes researchers and domain experts who, in most cases, possess limited
IT knowledge. This group defines the application requirements for the second group —
application developers — skillful enough to actually create the application. Developers
use resource available online and write the application glue code, connecting existing
pieces of functionality. Actual computational resources have to be delivered by third
parties, i.e. our third user group — resource providers. They are the computer scientists
able to implement the defined requirements in various technologies.

The identified technologies and user habits allow us to define requirements for
the Grid Resource Registry, whose most important features are listed below. These

Grid resource registry — abstract layer for computational resources 37

requirements are split into two groups: the first group deals with simplifying the
application development process while the second one is connected with the charac-
teristics of the distributed environment where applications are run. This environment
is highly unstable and susceptible to failure, involves significant latencies and topology
changes, etc.

From the user perspective, the requirements are as follows:

1. Writing client code for various technologies is often difficult and forces developers
to gain knowledge about each technology. Such tasks are time-consuming and
error-prone. This problem forces users to define the first requirement for our
system: hiding the technical complexity from the user, thus allowing him/her to
focus on delivering the required application functionality instead of mastering
new technologies.

2. Yet another existing issue is connected with online resource documentation or,
better to say, the lack of such. This drawback allows us to define the next re-
quirement: the possibility to annotate (using human-readable descriptions and
ontologies) each element of a computational resource.

3. The end user is responsible for defining application requirements. In most cases
this user has limited knowledge about computer science, but has broad knowledge
about the domain (s)he is an expert in. Basing on this scenario, we have identified
another requirement for our system: the end user should be able to browse the
registered resource, using concepts familiar to him/her.

Additional, environment-related requirements are as follows:

1. The key issue associated with online computational resources is their availability.
In a dynamic environment it is often the case that distributed resources become
unavailable (e.g. due to routing problems or service restarts). This results in
another system requirement: the ability to find working computational resources
during application execution.

2. Distributed environments deliver many heterogeneous computational resources
that can be installed on powerful machines with high network bandwidth, or on
average machines with poor bandwidth. It should therefore be possible to match
each application to the most suitable services. Additionally, taking into account
network changeability, the best service should be found at runtime rather than
during development. Thus, the registry should deliver an optimizer with advanced
optimization algorithms, able to locate the best service for the application.

The requirements presented above are used to define resource descriptions and the
architecture of the Grid Resource Registry (GRR). As a result, the registry is a place
which connects all three user groups (application end users, developers and resource
providers) at each step of the application lifecycle, from application requirements
definition to application execution and maintenance.

As stated in Section 2, existing solutions lack a layer of abstraction for describing
distributed computational resources, which is a significant drawback from the end
user perspective (see Section 3). The abstract layer available in the Grid Resource

38 M. Kasztelnik, M. Bubak

Registry addresses this deficiency. The registry reuses patterns available in object-
oriented programming, such as interfaces, classes and instances, applying them to
descriptions of remote computational resources, created using various technologies
(Fig. 2).

: H [Instance |
Grid Object Implementation T ie
- OperationA —

- OperationB [Instance |

Implementation ee
Instance

Fig. 2. A resource description consists of three levels. The first level — technology-indepen-
dent — describes the functionality of the resource while the remaining two technology-specific
layers deliver information on how to invoke and locate resources

4. Resource abstraction

The most abstract layer of the resource description is the specification of the resource
behavior (Grid Object). It describes all service operations, including their input and
output parameters. Each parameter, besides a human-readable description, can be
assigned an existing ontology concept. Owing to this integration the end user can
browse the ontology concept and query all Grid Objects and operations which use
them. This step reduces the potential for misunderstandings between domain experts
(end users) and application developers as they communicate using shared concepts
from the same ontology. Additionally, the registry stores information about dependen-
cies between service operations, assisting developers during the application creation
phase.

The remaining two layers (Grid Object Implementation and Grid Object In-
stance) deal with technical aspect of the service. The Grid Object Implementation
stores information specific to a given service implementation technology. Furthermore,
this layer also allows users to define a nonfunctional description of the service (e.g.
its license).

The final layer (Grid Object Instance) is used to describe deployment-specific
properties, such as endpoints where the service is deployed and installation-related
details (e.g. service timeout). This layer is integrated with external subsystems, in-
cluding monitoring [1] and provenance [2] tools.

5. Grid Resource Registry: architecture and functionality

The central point where information about services is located, is the Grid Resource
Registry. It is a module which implements the universal resource description paradigm
presented in the previous sections. Fig. 3 presents the registry and its place in the en-
vironment for creating and executing applications composed from preexisting remote
computational resources. It is used by other system components (and, consequently,

Grid resource registry — abstract layer for computational resources 39

[Provenance system |

i B N
©
s SN = || Onto X
9] . 3.
8 < i aQ }O> browser | |c
8: A —
j resource 8
[ORE= i T
0 .8 i Registry 2] orM g7 | le)
5 § {ora L= Meone | | | 5 N
o g "E [a) }O}“ Grr
50 e browser | |o
02 P x
vo ’ ! 2
u>j : Registry €] i & Admin ||E
o Notification List L | | !
3 otifical |oln istener -] 5 }O} plugin
-------------------- . L | .

[Monitoring system |

Fig. 3. The Grid Resource Registry supports all three resource description layers. It is inte-
grated with other modules which, together, deliver an environment capable of creating and
executing complex distributed applications for e-science

by different groups of users) at each phase of the glue code lifecycle, starting with
requirements definition, through development to execution. A detailed description of
this architecture is presented below. The registry is split into two parts:

1. The first part is placed on the server side and includes service description stor-
age and registry clients, used by other systems to query, add and edit registry
contents.

2. The second part describes required and optional registry user interfaces which
assist during the glue code creation process and enable management of registry
contents.

5.1. Registry server and its clients

The Grid Resource Registry server is a repository which stores information about
computational resources. It is a central place where application developers search for
available services, and from which the Execution Service (e.g. the Grid Operation
Invoker [14]) receives technical specifications of the services. The Execution Service
can ask the repository for services (using its abstract resource description layer), as
well as for endpoints of specific service instances. A detailed description of this process
is presented in Section 6.

The distributed environment where remote computational resources are installed
is highly dynamic. Thus, there is a need to check whether a registered service is
working or not. For this purpose the registry is integrated with a monitoring system.
Integration is a two-way process. At the beginning the registry notifies the monitoring
system about every computational resource which should be monitored. This request
contains all technical information required by the monitoring system. The monitoring

40 M. Kasztelnik, M. Bubak

system monitors registered services and periodically sends information about service
availability (active, inactive, not monitored) to the registry. When the registry receives
a message, it sets the appropriate Grid Object Instance status. As a result, when the
optimizer asks about Grid Object instances, only information about working instances
is returned.

In choosing the best Grid Object Instance, the optimizer [15] takes into account
various criteria, including instance reliability. The registry obtains this information
thanks to integration with a provenance system. Each time the Execution Service
invokes a service operation, it sends an event to the provenance system (informing it
whether the invocation was successful or not). The provenance system aggregates this
information and periodically calculates service reliability. This information is stored in
the Grid Resource Registry and exposed each time the optimizer asks about instances.

Registry browsing is available for all users, but content modification should be
restricted to a limited group of users. The Grid Resource Registry supports this
functionality by providing web services for content modification, secured using the
WS-Security standard. This standard allows us to integrate the registry with various
types of security infrastructures (e.g. Shibboleth [11] and GSI).

5.2. User interfaces

Providing a simple method for querying and exploiting registered computational re-
sources is the most important requirement facing the Grid Resource Registry. It can-
not be fulfilled without user-friendly interfaces which help the user at each stage of
development, starting with application requirements definition, through implementa-
tion, to execution.

For the developer, a Grid Resource Registry browser was created. This part of
GRR is an Eclipse RPC! plugin, which allows users to view and modify the contents
of the registry (on every level of resource description — both technology-independent
and technology-specific).

Before the developer can begin working on the application, the domain expert
has to define the relevant requirements. The Grid Resource Registry bowser provides
support for this group of users. It is integrated with the Ontology Browser plugin [5],
which allows users to select an ontology class and delegate a query to the GRR
browser plugin. Consequently, the user is able to search and browse all Grid Objects
and operations which use a selected ontology concept. As a result, the domain expert
can help the developer search for appropriate services that are going to be used in
the application.

Ihttp://wiki.eclipse.org/index.php/Rich_Client_Platform

Grid resource registry — abstract layer for computational resources 41

6. Example of Grid Resource Registry usage

The process of e-science application development consists of several steps: require-
ments definition (performed by the domain scientist), glue code development, appli-
cation release and, finally, application execution.

The first step for every e-science application is identification of the problem do-
main. For example, the user may require an application for data mining calculations?.
Subsequently, the application developer searches the ontology for concepts connected
with data mining. During this task, the Ontology Browser is used. Integration be-
tween the Ontology Browser and the Grid Resource Registry browser plugins ensures
that the developer can review all Grid Objects and operations which accept or re-
turn selected ontology concepts. The developer can either select Grid Objects (the
technology-independent resource description layer — see Fig. 2) or point to a specific
implementation or instance of a given Grid Object. If a Grid Object is not found, the
developer may create a new Grid Object and notify the resource provider that an
implementation of a particular service is required. In this situation the Grid Object is
used as an interface for the new service. Once this is done, the resource provider may
create (using the most suitable technology) an implementation of the selected Grid
Object, deploy this Grid Object Implementation and register a Grid Object Instance in
the registry. Now, the application glue code can be completed and released to the end
user. Thanks to the abstract resource descriptions delivered by the registry, the devel-
oper is not concerned with the specific technology used to create the service instance
or with the question which instance will be used during the application execution
phase.

A data mining application showcasing our technology and, in particular, the op-
eration of the Grid Resource Registry, is shown in Figure 4. The application code is
expressed in JRuby. It spawns two Grid Objects. The first one (WekaGem — line 1) is
responsible for loading data from the database (lines 2-3) and preparing it for data
mining calculations (lines 5-7). Additionally, it is responsible for checking classifi-
cation effectiveness (lines 12-13). The second object (OneRuleClassifier — line 9)
creates a single-rule classifier, which is trained using sample data (line 10). Subse-
quently, actual classification is performed (line 11). Proper classification depends on
the training operation. This information (dependencies between operations) is stored
in the registry and the developer is notified about it during the application develop-
ment phase.

The most important part of this application involves creating grid objects (lines 1
and 9), where a technology-independent registry layer is used. Thus, the developer
does not need to focus on resource implementation technology and placement. The
identification of the resource occurs during the execution phase, when the Execution
Service connects to the registry and requests the best resource instance, along with

2 This is a typical example of GRR usage; other examples of successful usage of GRR can be
found at http://virolab.cyfronet.pl

S
[N}

M. Kasztelnik, M. Bubak

1 retriever = GObj.create(’WekaGem’)

2 A = retriever.loadDataFromDatabase (

3 DATABASE, QUERY, USER, PASSWORD)

4

5 B = retriever.splitData(A, 50)

6 trainA = B.trainingData

7 testA = B.testingData

8

9 classifier = GObj.create(’0OneRuleClassifier’)

[0 classifier.train(trainA, attributeName)

l1 prediction = classifier.classify(testA)

12 classificationPercentage = retriever.compare (

13 testA, prediction, attributeName)
14

5 puts ’Predicted data: ’ + prediction

l6 puts ’Prediction quality: ’ + classificationPercentage

Fig. 4. Simple data mining application presenting the idea of applying resource abstractions,
as described in this paper. The application is written in JRuby

its technology-related information. The registry locates all Grid Object Implementa-
tions and working Instances and passes this information to the optimizer. Depending
on the optimization algorithm and received information about instances (e.g. service
technology, availability, reliability, specification of the machine on which the service
instance is installed), the optimizer chooses the most suitable instance for every ap-
plication run. As a result, the Execution Service receives a technical description of the
selected instance which allows it to invoke the resource. The registry is continually
updated by external systems, such as provenance and monitoring — thus the data sent
to the optimizer is always up-to-date.

7. Summary

This paper presents the idea of describing remote computational resources using three
layers: one technology-independent and two technology-specific. This distinction sim-
plifies the process of developing e-science applications allowing developers to focus
on delivering the required functionality instead of creating technology-specific appli-
cation code. This registry facilitates collaboration between three users groups repre-
sented in modern research teams. The Grid Resource Registry repository implements
the defined resource description paradigm, enabling universal access to computational
resources and rapid development of collaborative applications.

The presented resource registry is used in the ViroLab, Gredia and PL-Grid
projects to create applications for virology, bioinformatics and chemistry research
teams, as well as for media and banking user groups. During these projects we have

Grid resource registry — abstract layer for computational resources 43

verified that the requirements defined in Section 3 are indeed fulfilled. Currently, we
have more than thirty production applications released and executed frequently. This
demonstrates the universal nature of the Grid Resource Registry. A similar registry
will be present in the UrbanFlood project to store information about resources in the

Common Information Space3.

Acknowledgements

This work was partially funded by the European Commission under the UrbanFlood—
248767 project. The Authors are grateful to Maciej Malawski and Piotr Nowakowski
for their comments and suggestions.

References

[1] Balis B., Bubak M., Labno B.: Monitoring of grid scientific workflows. Sci.
Program., 16(2-3), 2008, pp. 205-216.

[2] Balis B., Bubak M., Pelczar M.: From monitoring data to experiment information
— monitoring of grid scientific workflows. [in:] E-SCIENCE ’07: Proc. of the Third
IEEE International Conference on e-Science and Grid Computing, Bangalore,
India, 2007. IEEE Computer Society, pp. 77-84.

[3] BioCatalogue, 2009. http://www.biocatalogue.org.

[4] Bubak M., Gubala T., Kapalka M., Malawski M., Rycerz K.: Workflow composer
and service registry for grid applications. Future Generation Computer Systems,
21(1), January 2005, pp. 79-86.

[5] Bubak M., Malawski M., Gubala T., Kasztelnik M., Nowakowski P., Harezlak D.,
Bartynski T., Kocot J., Ciepiela E., Funika W., Krol D., Balis B., Assel M.,
Tirado-Ramos A.: Handbook of Research on Computational Grid Technologies
for Life Sciences, Biomedicine and Healthcare, chapter Virtual Laboratory for
Collaborative Applications. Information Science Reference, IGI Global, 2009.

[6] EMBRACE, 2009. http://www.embraceregistry.net.

[7] Foster 1., Carl K.: Scaling system-level science: Scientific exploration and it im-
plications. Computer, 39(11), November 2006, pp. 31-39.

[8] The Apache Software Funcation. Apache juddi webpage. http://ws.apache.
org/juddi/.

[9] Gil Y., Deelman E., Ellisman M., Fahringer T., Fox G., Gannon D., Goble C.,
Livny M., Moreau L., Myers J.: Examining the challenges of scientific workflows.
Computer, 40(12), 2007, pp. 24-32.

[10] Huang Z., Du B., Gu L., He C., Li S.: Distributed grid resource registry meta-
service: design and implementation. [in:] Autonomous Decentralized Systems —
ISADS 2005, 2005, pp. 531-535.

[11] Internet 2 Project. Shibboleth, 2008. http://shibboleth.internet2.edu/.

3 http://urbanflood.eu

44 M. Kasztelnik, M. Bubak

[12] Kryza B., Stota R., Majewska M., Pieczykolan J., Kitowski J.: Grid organization-
al memory-provision of a high-level grid abstraction layer supported by ontology
alignment. Future Gener. Comput. Syst., 23, March 2007, pp. 348-358.

[13] Lord P., Alper P., Wroe C., Goble C.: Feta: A light-weight architecture for user
oriented semantic service discovery. The Semantic Web: Research and Applica-
tions, 2005, pp. 17-31.

[14] Malawski M., Bartyniski T., Bubak M.: Invocation of operations from script-
based grid applications. Future Generation Computer Systems, 26, May 2009,
pp. 138-146.

[15] Malawski M., Kocot J., Ryszka 1., Bubak M., Wieczorek M., Fahringer T.: Opti-
mization of application execution in the gridspace environment. [in:] S. Gorlatch,
P. Fragopoulou, and T. Priol, editors, CoreGRID Integration Workshop 2008 —
Integrated Research in Grid Computing, April 2008, pp. 395-405.

[16] Nowakowski P., Harezlak D., Bubak M.: A new approach to development and
execution of interactive applications on the grid. [in:] CCGRID ’08: Proceedings
of the 2008 Eighth IEEE International Symposium on Cluster Computing and
the Grid, Washington, DC, USA, 2008. IEEE Computer Society, pp. 681-686.

[17] Oinn T.M., Greenwood R.M., Addis M., Alpdemir M.N., Ferris J., Glover K.,
Goble C. A., Goderis A., Hull D., Marvin D., Li P., Lord P. W., Pocock M. R.,
Senger M., Stevens R., Wipat A., Wroe C.: Taverna: lessons in creating a work-
flow environment for the life sciences. Concurrency and Computation: Practice
and Experience, 18(10), 2006, pp. 1067-1100.

[18] OMII-UK. Grimoires. http://www.grimoires.org/.

[19] OSASIS. Uddi standard website, 2007. http://uddi.xml.org/.

[20] Seekda, 2009. http://seekda.com.

