
 Lukasz Nocuń

Micha l Nieć

Pawe l Piku la

Aleksander Mamla

Wojciech Turek

CAR-FINDING SYSTEM
WITH COUCHDB-BASED SENSOR
MANAGEMENT PLATFORM

Abstract The growing performance of low-cost mobile devices makes it possible to per-

form advanced processing on mobile sensors. This creates the need to building

a management system for groups of sensors actively analyzing signals from

hardware devices. In this paper, an architecture of a CouchDB-Based Sensor

Management Platform is presented and its application for the problem of find-

ing stolen cars is shown. Detailed performance tests of the platform as well as

its application are provided.

Keywords sensor networks, mobile devices, car plates recognition

Computer Science • 14 (3) 2013 http://dx.doi.org/10.7494/csci.2013.14.3.403

403

1. Introduction

Many achievements of science and technology have been successfully utilized by law

enforcement services to improve the rate of crime detection and increase public safety.

One such crime which would likely be reduced by using recent scientific advancements

is car theft.

Hundreds of thousands of cars are stolen in the EU each year [1]. Thieves often

use the stolen car’s license plates for some time, trying to move the car while hiding

in heavy urban traffic. Automatic methods of recognizing the plates of moving cars

based on a distributed monitoring of urban areas could help find such cars and reduce

the number of thefts.

The problem requires the use of many mobile devices capable of acquiring such

visual data. Assumptions might suggest utilizing one of the well-established sensor

network management systems, like TinyDB [2] or SwissQM [3]. The domain of wire-

less sensor networks (WSN) focuses on using very simple devices for collecting raw

data from the environment. Considered issues include limited communication ranges,

network consistency, protocols optimization, and power management [4]. Typically,

a WSN can be queried for data from a particular sensor or area. The data is collected

or processes in the central unit of the network.

A distributed monitoring system which could successfully perform complex data

analysis, like recognizing the plates of cars moving in a large urban area, requires

a different approach. The amount of visual data collected by a large number of

devices cannot be transferred to a central processing system and cannot be analyzed

in a centralized manner. These issues have been previously discussed in [5].

A different approach (which was used in the system presented in this paper)

assumes a distribution of data processing. Mobile devices are no longer reduced to

functioning merely as data acquisition units, but to perform complex data analysis

and notify the central server of the system only when important information is de-

tected. The central server is responsible only for defining tasks for mobile devices and

collecting information. The server is not required for the mobile devices to work –

it can be temporarily switched off without any impact to the system. The creation

of such systems is becoming possible due to the significant increase of computational

power of low-cost mobile devices observed in recent years.

The particular task of finding cars, which is considered in this paper, requires an

algorithm for identifying car plate numbers in images collected by mobile devices. The

problems of automatic number plate detection [6] and recognition [7] have received

enormous attention over the past few decades. A good survey on the methods can

be found in [8]. Typically, the problem is divided into two consecutive stages: plate

extraction and character recognition.

Plate extraction. The goal of the first stage is to select an appropriate region

of interest within an image where a possible plate may be located. Two of

the most popular ways to accomplish this are through morphological operations

and signature matching. Morphological operations can enhance the plate area

404 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

so it is possible to use connected component labeling to get several candidate

polygons. Position, shape, and color filters are used to find only the correct

car plate patterns. The signature matching method involves calculating image

histograms after applying an edge detection filter. An area with more vertical

lines is a good candidate for analysis.

Character recognition. Optical character recognition is a wide area of expertise

not solely limited to car plate recognition. In some cases, any general purpose

OCR algorithm could be used, but the results may be poor. A better idea is to

use an algorithm which is designed with this specific requirement in mind. Cus-

tom designed neural net recognizers and kNN character classifiers are examples

of techniques which take into account additional information on character size,

position, and font.

The main contribution of this work is the novel architecture of the scalable and

flexible sensor management platform. The simplicity of implementation combined

with the provided features make this approach very promising. The car plate recog-

nition algorithm is used as an example of a complex processing task which can be

executed successfully on mobile active sensors. The algorithm used here does not go

far beyond state-of-the-art in this domain.

The sensor management system presented in this paper is inspired by the Erlang-

based sensor management framework presented in [9]. The assumptions and aims

are similar; however, a new design of the architecture helped overcoming significant

limitations. The new system has been successfully integrated with an image processing

algorithm executed on mobile devices which is capable of detecting car plate numbers.

In the next two sections, the architecture of the CouchDB-based sensor manage-

ment platform is presented in details, and its performance tests are presented. In the

section 4, the car plates recognition algorithm is described, and basic performance

results are provided. Section 5 contains results of real-life experiments which prove

usability of the system in particular conditions and show its limitations.

2. Architecture of the CouchDB-Based Sensor

Management Platform

The aim of the platform was to create a unified system to manage a network of mobile

sensors. The system should provide tools to monitor the state of sensors, define tasks

that can be executed by sensors, and provide storage for discovered information.

The platform also should supply methods to browse, filter, and analyze information

collected by the sensors. The general architecture is shown in Figure 1.

The system is strongly based on the CouchDB database. All crucial requirements

of the platform, like information storage and robust communication, are supported

by the database. Successful operation depends mostly on proper deployment and

configuration of the CouchDB system.

Car-finding system with CouchDB-Based Sensor Management Platform 405

��������	��A��

�������

BCDE�EF����E�����

�	AB

�C�DE	C

���E���F��F��F

�

����

�E�����	�������

�������

F	�E�CB����

E�	���B�C��EC

�������

��������������	�

��F������E���E����� ��
 C���!�F����!���F"F#� �

� �����������$E�����C�����

�������������������������E���E���

������������������������������� ��F"F�����#

F	�E�CB����F	�E�CB���� F	�E�CB����

F	�E�CB����

��������

Figure 1. General architecture of the platform.

2.1. CouchDB

Apache CouchDB is a NoSql, schema-free database. It is a document-oriented

database – data is stored as documents represented with the use of JSON standard.

Data that cannot be represented as JSON object (e.g., pictures, binary files) is stored

as an attachment.

Documents in the CouchDB database are stored in a flat address space. Each

document is identified by a unique ID. There are no correlations between separate

documents. Because of this, CouchDB introduces a new model of data filtering and

querying. Data is retrieved from the database with use of views – special functions

written in JavaScript. Views take a CouchDB document as an argument and deter-

mine if the document should be retrieved in view results. Views are also stored in the

database as documents; but to distinguish them from other data, these documents

are stored as design documents. Views act as the map part in a MapReduce system.

CouchDB has a built-in fault-tolerant data replication mechanism. It supports

both master-slave and master-master replication that can be used between different,

geographically-spread instances of CouchDB or on a single instance (e.g. to create

backup). All interactions with CouchDB are done via a straightforward HTTP inter-

face.

The unique features of CouchDB (such as document oriented storage, built-in

replication, and universal HTTP interface) were the main reasons why it has been

used as the core element of the platform. In the sensor management platform, it is

used for:

406 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

• Providing Web GUI application using a built-in Web server.

• Managing sensors and their configuration. A sensor registers a local instance of

CouchDB which causes the information replication in the central server. The

same mechanism is used for providing configuration for the sensor.

• Storing tasks and distributing them among the sensors using filtered pull repli-

cation.

• Collecting information discovered by the senors. Each sensor can store data

directly in the central database, using its HTTP interface. For more robust

operations, it can also use a local database which will automatically synchronize

with the central server when a network connection is available (push replication

in Fig. 1).

2.2. Sensors

Sensor is a single application controlling a particular physical sensor or group of

sensors. It acquires data from the hardware, performs a specific analysis, and delivers

processed information to the database. Communication with the platform is done via

HTTP requests; therefore, sensors can be implemented in any programming language

supporting such requests. This flexibility allows us to build sensor applications on

various devices like PCs, mobile phones (running Android/iOS/Windows Mobile),

and other ARM-based devices.

Because of poor connection quality provided by sensor communication modules

(such as GPRS), there is a need for caching collected data and then synchroniz-

ing it with the main database. The simplest way to achieve this is to start local

CouchDB and use it in the same way as the main database. The only additional

thing which should be configured is replication. As a result, we have a fault-tolerant,

self-synchronizing system out of the box. We have tested the replication in a network

with 80% packet drop and everything worked without any problems – all the data

stored in a sensor database was correctly replicated in the main server.

CouchDB can be easily deployed on any Linux system which include ARM dis-

tributions; however, on operating systems installed on smartphones or tablets (iOS

and Android), it has limited access rights (no access to the root account). There are

two solutions to this issue: Couchbase Mobile (which is no longer supported) and

TouchDB. Both are CouchDB-compatible database engines. The first one is Couch-

base port for Android and iOS written in Erlang. TouchDB implementation is not

based on CouchDB – it is a platform-specific implementation. TouchDB is charac-

terized by low memory and CPU usage. It starts many times faster than Couchbase

Mobile. TouchDB in comparison to CouchDB is like SQLite to MySQL.

The platform requires each sensor to create a sensor document and update it

every 30 seconds to be considered as active. The sensor document contains fields

describing sensor features such as unique id, type, state, name, version, available

tasks, and configuration. When data is ready to delivery, a sensor should create

a new sensor document, include the data, and fill proper fields identifying the sensor.

Car-finding system with CouchDB-Based Sensor Management Platform 407

If the sensor adds a location field, then the results would be marked on the map

available in the data view.

Tasks are defined in available task field of sensor document. The field describes

available tasks which, of course, may change during the sensor’s lifetime. The simplest

example is start and stop tasks – if the sensor is running, the start task should not

be visible to user. Task description contains the name as well as in/out parameters

defined by name and type. Thanks to this description, the GUI can display proper

input form and it can be easily extended for non standard cases.

The sensor periodically queries the database for new tasks, processes them, and

updates the task document (changing its state and attaching result or error descrip-

tion). To receive new tasks, the sensor can query the remote database using a suitable

CouchDB view or setup filtered pull replication to its own local database. If a short

response time is required and regular polling is a problem, long polling strategy on

CouchDB changes feed can be used. Then, the sensor is notified when a new task

arrives.

During platform development, four sample sensors were created. One of them

is a reference sensor written in Python which reports the current load average of

a CPU. The rest were created for the Android platform. Initially, Couchbase Mobile

was used as a cache for data, but it was too CPU-consuming and unstable; thus, it

was eventually replaced by TouchDB.

The sensors collect different types of data, including GPS location, camera im-

ages, and sound samples. Images and sounds are stored as document attachments. It

is worth mentioning that the platform does not enforce any particular data structure:

any JSON object combined with an optional binary attachment can be used.

2.3. Cauchapp – Graphical User Interface

One of the platform elements is a Rich Internet Application serving as user inter-

face (Fig. 2). The application helps the user to interact with the platform and the

registered sensors. It can be used to:

• monitor sensors state – display sensor details (e.g. sensor’s name, type, state

etc.),

• manage sensors – display or change configuration, submit new tasks, list all

submitted tasks,

• view data collected by sensors – view data from particular sensor or browse data

collected by all sensors.

GUI simplifies sensors management and monitoring. Whenever one of the sensors

updates its state or sends new data, it is reflected in the GUI. All sensors that provide

their location are marked on the map. The user can define new task for a specific

sensor, check/update its configuration, or browse recent data sent by it.

Furthermore, GUI provides tools to handle data collected by sensors. It presents

any JSON formatted data, displays images, and can playback sound files. To browse

data more efficiently, the user can specify his/her own customizable filters.

408 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

Figure 2. GUI screen with list of data entries collected by sensors. Each item from the list

on the left represents a single result sent by one of the sensors. When the user chooses one

of the items, entry details are displayed in a separate block. When GPS coordinates are

delivered with data, location will be marked on a map. The user can define custom filters

to effectively analyze the collected data.

2.4. Features of the platform

The created platform has a very simple architecture; however, it provides several

unique features which are worth discussing.

Multiplatform. The only requirement to set up a platform is to run CouchDB

instance. CouchDB is available for Linux (both regular PC and ARM based),

MS Windows, and OSX. Furthermore, when the platform is up and running, the

only thing that the user needs to interact with it is an up-to-date web browser.

Support for heterogeneous sensor devices. Due to CouchDB’s HTTP inter-

face, there is no need for any dedicated solutions for communication between

the sensors and the server. The sensors use only straightforward HTTP re-

quests/responses.

Extensibility. CouchDB is a document oriented, NoSQL database. Thanks to this,

the platform is very flexible in regards to the possible data formats that can be

collected by sensors.

Resistance to poor network quality. If the sensors use a local instance of

CouchDB, then the built-in fault-tolerant data replication mechanism resolves

all issues related to data synchronization between the server and the sensors.

Replication is handled by the database without any special actions required from

Car-finding system with CouchDB-Based Sensor Management Platform 409

the sensor. Replication is also resistant to connection problems that are quite

common in mobile devices.

3. Sensor Management Platform performance

The platform was stress-tested to see how it behaves under a heavy load. The heavy

load in our context means thousands of sensors simultaneously sending data every

few seconds to the platform’s server.

3.1. The premises

The CouchDB database was started in Amazon Elastic Compute Cloud. The machine

was a paravirtualized of type “m1.xlarge”. Table 1 shows the detailed configuration.

Table 1

Parameters of machine used to run CouchDB instance.

Cores 4

Ram 16GB

Storage Amazon EBS (network storage)

Operating System Ubuntu Server 12.04 (Linux)

CouchDB 1.2.1 (using Erlang OTP R15B03-1)

Network interfaces 1

The sensors were simulated by two other amazon ec2 instances with parame-

ters described in Table 2. Traffic was generated by Tsung [10] program running in

distributed mode.

Table 2

Parameters of single machine used to simulate sensor.

Cores 2

Ram 4GB

Storage Amazon EBS

Operating System Amazon Linux

Tsung 1.4.1 (using Erlang OTP R15B03-1)

Network interfaces 1

3.2. Test scenarios

Four scenarios have been prepared and tested in order to test various aspects of

platform performance.

410 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

5000 concurrent sensors writing to database

This scenario assumed that only sensors were interacting with database uploading

data regularly. The mock sensors were being created over the time of 10 minutes with

0.03 seconds gap. Each sensor performed the following steps:

1. generate random sensor id,

2. submit sensor description document,

3. enter loop (repeat 30 times):

(a) submit data document with random GPS data,

(b) wait from 1 to 10 seconds.

The platform GUI was not used by any users to prevent CouchDB from generating

map-reduce views. This scenario was designed to show how the database performs

without any querying from the sensors or users. The test was also a baseline for

further testing.

5000 concurrent sensors writing to database while user query the results in

real-time

The second scenario was the same as the first one; however, during the test, the

user browsed the GUI application, watching sensors which triggered continuous-view

generation. The CouchDB map-reduce engine traversed though every new document

and generated views which then were stored on the disk. This operation demands

computational power. This test was aimed to check how generating a view from a large

collection of new or updated documents could affects the overall server performance.

Sensors uploading large attachments while user query the results in real-time

In this scenario, the mock sensors attached a file (30 000 bytes) to every data doc-

ument. This test was designed to measure the performance for a platform which

handles imaging and other sensors which can store large data. The rest of the test

parameters were similar to the previous ones.

Maximum load

The last scenario was introduced to determine the maximum number of sensors which

the platform can handle. The test was similar to the second one; however, this time,

the number of sensors was increased to 12 000 and the gap between spawning each

new sensor was reduced to 0.01 second.

3.3. The results

The first scenario ran correctly without any disturbing events from the database. As

shown in the Figure 3, the average time of the request (which is saving data document

to the server) was between 10 and 15 ms (which is a very satisfying number from the

sensor perspective).

Car-finding system with CouchDB-Based Sensor Management Platform 411

Figure 3. Mean time of saving data docu-

ment in the database during the first test.

Figure 4. Data submission rate during the

1st test.

During the time when all 5000 sensors were up and sending data, the platform

reached a speed of 1,000 requests per second and sustained it during the whole test

(Fig. 4). Processor utilization sustained at around 60% and memory consumption

was less than 1GB during the whole test (Figure 5 and 6).

Figure 5. CPU utilization percentage during

the 1st test.

Figure 6. Memory consumption in KB dur-

ing 1st test

The second scenario was also performed correctly, but there were several mo-

ments when response time to sensor requests rose to 600 ms (Fig. 7). Also, the CPU

utilization was higher and sustained at 80% (Fig. 8).

Despite occasional performance issues, overall speed was similar and allowed the

platform to maintain around 1000 data submissions per second (Fig. 9). Memory

usage did not change (Fig. 10). None of the sensor requests ended with an error.

The next scenario – attaching files to the data documents – performed in a com-

pletely different manner. It seems like our test machines did not have sufficient

412 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

Figure 7. Mean time of saving data docu-

ment to the database during the second test.

Figure 8. CPU utilization during the second

test.

Figure 9. Data submission rate during the

1st test.

Figure 10. Memory consumption during the

2nd test.

bandwidth to deal with the simulation of many concurrent uploads. So, the load

generators could not generate more them 2000 sensors actively uploading documents.

Figure 11 shows clearly the bandwidth issue. The response time constantly in-

creased while the sensors were continuously created and began to upload data. The

available bandwidth was divided between more and more concurrent connections. As

a result, the upload requests lasted longer. The significant drop in request duration

around 600 seconds of test is the thime when most sensors finished uploading their

last data document and started to turn off. Therefore, they released bandwidth to

the remaining sensors which could upload the rest of their data very efficiently.

The average request rate was stable during the whole test; around the 70–80 data

submission per second (Fig. 12).

The processor and memory utilization was 30% (Fig. 13) and memory consump-

tion was 0.5 GB (Fig. 14). These values are much lower than in previous tests and

Car-finding system with CouchDB-Based Sensor Management Platform 413

Figure 11. Mean time of saving data docu-

ment to the database during the third test.

Figure 12. Data submission rate during the

third test.

shows that computational power was not a problem in these cases. The network av-

erage utilization during the test was 15.14 Mb/sec, and the total size of data sent to

server was 1.55 GB.

Figure 13. CPU utilization during the third

test.

Figure 14. Memory consumption during the

third test.

To confirm that networking is the problem, the scenario was rerun with attach-

ment sizes reduced to 10,000 bytes and 20,000 bytes. In both cases, there was no

significant change in the request rate nor in CPU and memory utilization. Network

utilization, however, was still around the 15 Mbits/sec.

During the last scenario, the maximum number of sensors which could be handled

by this setup was reached. The database started to return errors of code 500 to sensors

which is unacceptable behavior (Fig. 15). The situation occurred around 300 seconds

after the test started. The number of connected sensors went almost to desired 12 000

sensors at that moment.

414 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

Figure 15. HTTP code rate returned to sensors during 4th test.

Figure 16 and 17 show that the requests times and request rates deteriorated

when all 12,000 sensors tried to upload data to the server. After some sensors finished

uploading all 30 documents, the performance returned to an acceptable level. CPU

utilization (Fig. 18) was high during the whole test, and it was similar to the utilization

from the second test. Memory consumption went up to 2 GB (Fig. 19), which is almost

twice than in the previous tests.

Figure 16. Mean time of saving data docu-

ment to database during the fourth test.

Figure 17. Data submission rate during the

fourth test.

During the last 3 tests, the user interface was responsive and enabled the user

to see the incoming data and sensor activity. Due to slow view generation, there

was a delay between the state shown in GUI and the actual state of the database.

Nevertheless, it never took more than a minute to process all of the documents, and

the GUI was usually just a couple seconds behind.

Car-finding system with CouchDB-Based Sensor Management Platform 415

Figure 18. CCPU utilization during the

fourth test.

Figure 19. Memory consumption in KB dur-

ing the fourth test.

3.4. Platform performance tests summary

Comparing these four test results, we can see that generating views is a CPU-intensive

task (first and second test), and this can introduce occasional performance drops,

albeit at acceptable levels.

CouchDB show great potential when it comes to storing binary files attached to

the documents reported by the sensors. During the third test, network connectivity

was the bottleneck. The CPU and the memory were almost not used.

The very high load in the fourth test did not crash the database completely. The

server recovered from errors which occurred when more than 12,000 sensors submitted

data to the server.

4. Car plates recognition algorithm

The task of the designed system is to find a license plate on a given image, recognize

its characters, and compare the results with each entry from the list of stolen cars.

The best possible recognition system is not necessary; all that is needed is to find

a match of a given plate number on an image. The algorithm is expected to return

information on the fitness level. The last phase of plate matching will always involve

a human who will ultimately decide if the information is consistent with the visual.

The system was designed with real-time camera image processing in mind. It

could be used in a car (police patrol, public transport vehicle) or mounted above

a street. Weather conditions and the operating environment can affect the image

quality. For an optimal operation, a frame rate of 3 per second is defined as sufficient.

The algorithm’s efficiency and detection rate is highly dependent on camera setup,

lighting conditions, and weather. The hardware setup should be chosen according to

these requirements. Lighting can greatly vary in consecutive frames so it is important

416 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

that the frame rate is high to compensate for difficulties induced by environmental

factors.

The proposed solution is combining an existing approach based on morpholog-

ical operations with custom character classifier. The algorithm consists of several

consecutive stages,described below.

1. Preprocessing

Before the connected component labeling algorithm can be used, a number of

preprocessing operations must be applied. Firstly, the image is converted into

gray scale. (Fig. 20-left). Then, a white top hat morphological operation is used

to brighten up the plate area (Fig. 20-center). A threshold operation is used to

binarize the image (Fig. 20-right). There are only some areas of interest left –

some of them represent a car plate.

Figure 20. Initial preprocessing of the algorithm: left: conversion to gray scale, center: after

a white top hat operation, right: black and white thresholded image.

2. Plate localization

The next step is to divide the white regions and pick the ones that resemble car

plate in most ways. Connected components labeling algorithm separate certain

parts of the picture (bigger or smaller than a given size). All of the red squares

in Figure 21-left are possible plate candidates. These are filtered based on their

size, aspect ratio, and bounding rectangle angle. After that, there are just a few

plates left for further analysis, as seen in Figure 21-right.

Figure 21. Finding the plate candidates: left: all possible candidates, right: filtered possi-

bilities.

Car-finding system with CouchDB-Based Sensor Management Platform 417

3. Character separation

This stage is where the plate candidate (Fig. 22-left) is split up into individual

letters. Firstly, the plate candidate is blurred and normalized (Fig. 22-center).

A binary threshold operation is then used to create a black and white image

(Fig. 22-right). It is important to clear the image from all the noise that is left

before continuing.

Figure 22. Character segmentation stages: left: original image, center: normalized, right:

binarized.

Horizontal and vertical stripes-of-interest are chosen based on statistical analysis.

There are only the letters and the hologram sticker left on the picture as seen in

Figure 23-left and center. It is now possible to use region separation algorithm

to extract the letters (Fig. 23-right). Each character is then moved into its own

2D binary matrix and passed to the classifier.

Figure 23. Character segmentation stages: left: horizontal region of interest selected, center:

vertical region of interest selected, right: separated characters.

4. Character recognition

A simple kNN algorithm is used. Input gray scale image is resized down to the

size of pattern images (5x7 in this example – Figure 24-bottom) and converted

into a vector (35 elements in this case). The calculated vector is then compared

with each feature vector generated by the external tool (one or more for every

character). The calculated fitness value is between 0.5 (worst possible case) up

to 1.0 (the vectors are identical). Feature vectors were generated from car plate

font samples.

Figure 24. Top: feature vector generated from sample font; bottom: recognized characters

downsized to the 5x7 resolution.

418 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

5. Interpreting the results

It is possible to calculate a similarity level with plate numbers that are being

searched for. A value returned in this manner is a means of letter classification

for the best plate – match fitness. The recognized plate number can be shorter

or longer than a given match; hence, the need for an algorithm that is capable

of comparing them properly, maximizing the result. The proposed solution is

rotating one word over another, calculating each time the sum of the fitness

levels. The best possible result is then returned, taking into consideration the

penalty factor for the characters that were not found.

The implemented plate recognition algorithm provides sufficient quality for the

application. Provided that the image contains a clearly-visible car plate, it will find

it and build a proper list of character feature vectors. If the plate is on the list of

desired plates, it will be located with average match factor between 0.8–0.9.

The performance of the method is also sufficient. Tests on a modern laptop

showed that processing of images of about 1 M pixel took 100–250 ms depending on

the number of plates in the image. The performance of a mobile device equipped with

an ARM Cortex A9 CPU with floating point unit was a little worse; 2–4 frames per

second were processed (which is sufficient for the task considered in this paper).

5. Integration and tests

The platform was successfully integrated with ARM-based mobile devices which au-

tonomously executed the car-plates-finding algorithm. Hardware setup consisted of

an ARM-based PandaBoard ES 2 device. Images were acquired with an external USB

camera. The operating system used was an ArchLinux ARM edition.

The sensor application was built with constant-image processing in mind. There

were three main operation threads: heartbeat, task management, and image process-

ing. After startup, the program was controlled only via the platform web page –

responded to the user tasks and sent data with appropriate results to the platform

database.

The car plate sensor did not use local CouchDB instance. It sent data directly

to the main database using remote HTTP requests. The sensor application itself was

responsible for holding its own setup data (car plate list). The user could manipulate

the data by using suitable tasks in the online platform management system. The list

of plates was persistent throughout system’s life.

The real-life experiments have been performed twice at the same location – the

University parking lot. Both involved a few-minute’s drive with a camera installed in

a car.

The first time, weather conditions were perfect for the recognition algorithm:

full sun and cars that were not dirty. On the second day, conditions were completely

different. Heavy snow, dirt on cars, and drops of water on our car windshield caused

serious problems with recognition.

Car-finding system with CouchDB-Based Sensor Management Platform 419

In both cases, several cars were chosen in advance – the algorithm was configured

to look for them. The experiments showed that, under suitable conditions (the first

day), the system performed at a 92% efficiency, while in improper conditions (the

second day), only 25–30% of cars were identified. Below, we present several images

along with the car plate number matched by the algorithm. The last letter on each

plate was removed for privacy reasons.

Table 3

Results of recognition and matching in poor weather conditions.

KR1647? 81%

KR0146? 81%

KR609G? 84%

2A48 —

KR380C? 79%

The results in Table 3 show some imperfections of the algorithm. The fourth

plate was not recognized at all due to a blurry source image. The last plate was

matched incorrectly. Nevertheless, the overall quality of recognition and matching

was satisfactory considering the weather conditions.

6. Conclusions

The CouchDB database seems to be a very good basis for large-scale sensor networks

using actively-processing mobile devices. The architecture of the Sensor Management

420 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

Platform presented in this paper is rather simple; however, the non-functional features

of the platform and its performance are surprisingly good.

The recognition algorithm used as a basis for a car-plates-finding sensor is def-

initely not the best solution in the domain, leaving room for improvement. How-

ever, the overall performance of the integrated platform is satisfactory. The image-

processing algorithm operates reliably on mobile devices, providing sufficient perfor-

mance.

Acknowledgements

The research leading to these results has received founding from the AGH grant

no. 15.11.120.270.

References

[1] Eurostat. Crime trends in detail. http://epp.eurostat.ec.europa.eu/

statistics_explained/index.php/Crime_trends_in_detail, 2013.

[2] Madden S. R., Franklin M. J., Hellerstein J. M., Hong W.: TinyDB: an acqui-

sitional query processing system for sensor networks. Transactions on Database

Systems (TODS) – Special Issue: SIGMOD/PODS, 2003.

[3] Mueller R., Alonso G., Kossmann D.: SwissQM: Next Generation Data Process-

ing in Sensor Networks. Third Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, USA, 2007.

[4] Yick J., Mukherjee B., Ghosal D.: Wireless sensor network survey. Computer

Networks, 52(12): 2292–2330, 2008.

[5] Leszczuk M., Janowski L., Romaniak P., G lowaczand A., Mirek R.: Quality

Assessment for a Licence Plate Recognition Task Based on a Video Streamed

in Limited Networking Conditions. Multimedia Communications, Services and

Security. Communications in Computer and Information Science vol. 149, 2011,

pp. 10–18.

[6] Iwanowski M.: Automatic car number plate detection using morphological image

processing. Przeglad Elektrotechniczny. 81(3): 58–61, 2005.

[7] Ozbay S., Ercelebi E.: Automatic vehicle identification by plate recognition.

World Academy of Science, Engineering and Technology, 2005.

[8] Anagnostopoulos C.-N. E., Anagnostopoulos I. E., Psoroulas I. D., Loumos V.,

Kayafas E.: License Plate Recognition From Still Images and Video Sequences:

A Survey. Intelligent Transportation Systems, IEEE Transactions on. 9(3): 377–

391, 2008.

[9] Niec M., Pikula P., Mamla A., Turek W.: Erlang-Based Sensor Network Man-

agement for Heterogeneous Devices. Computer Science. 13(3): 139–151, 2012.

[10] Niclausse N., Tsung Documentation. http://tsung.erlang-projects.org/,

2013.

Car-finding system with CouchDB-Based Sensor Management Platform 421

Affiliations

 Lukasz Nocuń

AGH University of Science and Technology, Krakow, Poland

Micha l Nieć

Erlang Solutiuons, Krakow, Poland

Pawe l Piku la

AGH University of Science and Technology, Krakow, Poland

Aleksander Mamla

AGH University of Science and Technology, Krakow, Poland

Wojciech Turek

AGH University of Science and Technology, Krakow, Poland, wojciech.turek@agh.edu.pl

Received: 05.02.2013

Revised: 11.04.2013

Accepted: 14.06.2013

422 Łukasz Nocuń, Michał Nieć, Paweł Pikuła, Aleksander Mamla, Wojciech Turek

