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GRAMMAR BASED MULTI-FRONTAL SOLVER
FOR ISOGEOMETRIC ANALYSIS IN 1D

In this paper, we present a multi-frontal direct solver for one-dimensional iso-
geometric finite element method. The solver implementation is based on the
graph grammar (GG) model. The GG model allows us to express the entire
solver algorithm, including generation of frontal matrices, merging, and elimi-
nations as a set of basic undividable tasks called graph grammar productions.
Having the solver algorithm expressed as GG productions, we can find the par-
tial order of execution and create a dependency graph, allowing for scheduling
of tasks into shared memory parallel machine. We focus on the implementation
of the solver with NVIDIA CUDA on the graphic processing unit (GPU). The
solver has been tested for linear, quadratic, cubic, and higher-order B-splines,
resulting in logarithmic scalability.

graph grammar, direct solver, isogeometric finite element method, NVIDIA
CUDA GPU
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1. Introduction

The finite element method with hierarchical shape functions [6, 7] delivers higher or-
der polynomials, but the continuity of the global approximation is only C? between
particular mesh elements. This was the main motivation for developing the isogeome-
tric finite element method [5], which utilizes the B-splines as basis functions and, thus,
delivers C* global continuity.

The multi-frontal direct solver is a state-of-the art algorithm for solving sparse
linear systems of equations generated by finite element discretizations [9, 13]. The
multi-frontal solver algorithm is a generalization of the frontal solver algorithm [15, 8].

There were several attempts at parallelization of the multi-frontal direct so-
lver, targeting distributed memory, shared memory, or hybrid architectures. These
attempts were based on either partitioning of the computational domain into sub-
domains with overlapping or non-overlapping sub-domains [24, 25], redistribution
of the global matrix [14], or redistribution of the elimination tree into processors
[21, 22, 23, 26]. There were also attempts to develop a shared-memory version of the
multi-frontal solver, targeting the linux cluster nodes with multiple cores [10, 11, 12].

In this paper, we present the multi-frontal direct solver algorithm for GPU, which
is a hybrid parallel machine. Our implementation has been tested on a GeForce GTX
260 device which has 24 multiprocessors with 8 CUDA cores per multiprocessor, which
gives us 192 CUDA cores. The total amount of global memory is 896 megabytes.

The graph grammar based multi-frontal solver for isogeometric computations pre-
sented in this paper is the generalization of the GG based solver already developed for
one-dimensional finite difference simulation [17]. The graph grammar based analysis
of operations concurrency in the standard finite element method has been explored
for C° continuous elements, with focus on the generation of two dimensional compu-
tational grids with rectangular, triangular, and mixed finite elements [19, 20, 18].

The graph grammar based model allows us to investigate if concurrency is hidden
within the algorithm. It is done by analyzing the partial order of execution of the graph
grammar productions, namely the basic undividable tasks, and the identification of
sets of productions that can be executed concurrently [23].

In this paper, we generalize the idea of the graph grammar based solver into
one dimensional B-spline-based finite element method, delivering C* global continu-
ity of the solution. The methodology derived here implies logarithimic scalability of
the parallel multi-frontal solver algorithm. The methodology has been implemented
and tested on NVIDIA CUDA GPU, providing logarithmic execution time for linear,
quadratic, cubic, quartic, and quintic B-splines.

The motivation for using GPU cards for one dimensional isogeometric finite ele-
ment method is as follows: first, the isogeometric L2 projection in two or three di-
mensions can be expressed as a sequence of a solution of one dimensional problems
with multiple right hand sides [4]. The L2 projection can be applied for the solution
of the non-stationary time dependent problems with the Forward Euler scheme.
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Second, the solver can be utilized for an efficient solution of non-stationary ti-
me dependent problems when we need to perform several iterations, with either the
Forward Euler, Backward Euler or Crank-Nicolson methods. For all of these schemes,
the problem can be formulated in such a way that only the boundary conditions and
right hand side changes when we switch from one iteration to the other. This implies
that the LU factorization of the matrix can be performed only once, for the initial
time step. The boundary conditions are enforced just at the root of the elimination
tree, and the change of the right hand side implies the necessity of one forward elimi-
nation followed by backward substitutions. The LU factorization, although expensive,
is performed only once. In the following time steps, we can perform a single forward
and backward substitution. The time advantage of the usage of the GPU with respect
to CPU with MUMPS solver will allow for the solution of the non-stationary problem
one order of magnitude faster.

2. B-splines based Finite Element Method

We focus on one dimensional elliptic problem with mixed Dirichlet and Neumann
boundary conditions.

dx dx
u(0)=0 ®
w2y )

The weak form of (1-3) is obtained by using L? inner product with test function v

and integrating by parts, that is,
Find u € V= {u € H'(0,1) : u(0) = 0} such that (4)
b(v,u)=1(v),YveV (5)

1
where b (u,v) = / k() dilix) dlzh(:)

dx (6)

0
I(w) = / f(@)v (@) de + v (1) (7)

For isogeometric analysis, we approximate the solution with B-spline basis functions

u(x) ~ ZNW (x) a; veE{N;p}; (8)

where
Ni,O (5) = I[fufiﬂ] (9)
Nip(§) = =5 Ny () + 28 N (e (10)

Titp —&i Tiypr1 — &it1
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where Ij¢, ¢, ) is the identity function over the interval [&;, §;11].
Substituting these definitions in the weak form allows us to obtain the discrete
weak formulation, which is stated as

Zb(Nj,p (x), Nip (x)) ai = L(Njp (2)), V] (11)

To evaluate the integrals implied in (11), numerical quadrature rules are the
method of choice due to their flexibility and efficiency. In this application, we use
Gaussian rules to calculate (11). For each row in (11), the integral is restricted to the
support of IV; ,. This support is broken into elements, defined as segments where N; ,
and Nj, are simple polynomials. The integral b (N} ,, N; ;) restricted to an element e
is denoted the element stiffness matrix, while the restriction of I (N; ;) to the element

is denoted element force vector.

3. Grammar productions expressing the generation
of element local matrices

The computational domain Q = [0,1] is partitioned into N finite elements Q =
Uk=1,... N &k Ept1] = U,»:L__,N[%, %] We begin with the generation of element local
matrices called the frontal matrices. Each element e, = [k, {x41] frontal matrix is
generated by computing the integrals b (N , (z) , N; , («)) for B-splines restricted over
the element. For linear B-splines, there are two linear B-splines p = 1 Ny ; and Ny_11
having support over the element ej. Thus, the element frontal matrix consists in
2 X 2 = 4 entries, as it is illustrated in Figure 1 and in Table 1. For quadratic B-
splines p = 2, there are three functions Ny 2, Ni_1,2, and Nj_o 2 with support over
the element eg. The element frontal matrix has 3 x 3 = 9 entries, see Figure 2 and
Table 2. In general, for p order B-splines, we have Ny p,..., Ny_pm, , functions with
support over element e and the element frontal matrix has (p + 1)2 entries.

Table 1
For linear B-splines there are 2 functions over each element, so there are 2 x 2 = 4 elemental

matrix entries.

b(Nk-1,1 (), Ni—1,1 (x))  b(Ni—1,1 (z), Ni,1 ()
b(Ni,1 (%), Ni—1,1 (%)) b(Ni,1 (), Ng,1 ()

Each matrix entry is an integral that must be computed by using Gaussian qu-
adrature rules, see (12-13).
! dNjp (z) dNip (2)

b(Nj,(x),N;p(x)) = ) A(z) dx dz

S A (e) TR TR TE N () Ny () (12)
G

dzx + BNjp (1) Nip (1) =
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B(Ni.1,1,Nk-1,1) B(Ni1,1,Nk 1)
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b(Nk,erk—l,l) ?(Nk,erk,l)

N\

K k+1 K k+1

Figure 1. Basis functions interactions at element contribute to the element matrix for linear
B-splines.

1
15 = [ 1) Ny @) 303 (1) = 3 w61 (26 N (06) + 130 (1)
G

(13)

To compute the formulae (12-13), we need to compute the values of the B-spline
functions and their derivatives at Gauss points xg and at the end points. The process
of computation of the value of a B-spline at given Gauss point can be decomposed into
basic tasks. Similarly, the process of evaluating the functions and their derivatives at
the end point z = 1 can be divided into grammar productions. This last process is
not described, since it mirrors the analysis performed at Gauss points.

Table 2
For quadratic B-splines there are 3 functions over each element, so there are 3 x 3 = 9
elemental matrix entries.

b(Ni—2,2 (), Ne—2,2())  b(Nk—22(2),Nk—12(z))  b(Nk—2,2 (%), Ni,2 (2))
b(Ni—1,2 (), Ne—2,2(2))  b(Nk—1,2(2),Nk—1,2(2))  b(Nk-1,2 (%), Ni,2 (2))
b(Ni2 (), Ni—2,2 (x)) b(Ni2 (%), Ni—1,2 (x)) b (Nk2 (), N2 (2))

For linear B-splines, the computation of the value of the B-spline at given Gauss
point over an element ey, is straightforward. Linear B-splines have support over two
consecutive elements, see Figure 3. We need to compute the value of Ny 1 (z¢) and
the value of Ny_1,1 (z¢) The derivatives of the linear B-splines illustrated in Figure
4 also require computation of the value of N; ; (v¢) and the value of Ny_, , (zg).
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Figure 2. Basis functions interactions at element contribute to the element matrix
for quadratic B-splines.

Nk,l Nk-l.l Nk,l

k k+1 k+2 k k+1 k k+1

Figure 3. Basic tasks for computing of the value of linear B-spline at Gauss point xg.

' N' N'
N'1 k11 K1

k k+1 k+2 k k+1 k k+1

Figure 4. Basic tasks for computing of the value of derivative of linear B-spline
at Gauss point zq.

Note that a quadratic B-spline can be represented as the summation of two con-
secutive piecewise linear B-splines each multiplied by a linear function with identical
support to them, see Figure 5. Thus, the support of the quadratic B-splines spreads
over three elements. That is, to compute the contribution to the frontal matrix, we ne-
ed to compute Ny 2 (zq) with Ny_12 (z¢) and Ny_2.1 (z¢) at the Gauss points. These
functions are obtained by multiplicating previously-computed values of Ny_11 (zg),
and N1 (zg) by the appropriate linear functions with extended support. The pro-
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cedure is illustrated in Figure 5. Derivatives of quadratic B-splines require a little
more effort, since we need to utilize previously-computed values of linear B-splines
and their derivatives, see Figure 6.

Nia &;ii‘ t,?ﬁéi‘ * Nea
N2 % +
k k+1 k+2 k+1 k+2 k+3

Figure 5. Basic tasks for computing of the value of quadratic B-spline at Gauss point z¢.

aos * Na Nt % &og
k k+1 k+2 k k+1 k+2
1
N k,2
“gotan ¥ N N Seact
k+1 k2 k+3 k1 k2 k3

Figure 6. Basic tasks for computing of the value of derivative of quadratic B-spline
at Gauss point zq.

The procedure can be easily generalized for higher order B-splines, since it utilizes
the recursive structure of the B-splines formulae (9-10). The procedure for cubic B-
splines and their derivatives is illustrated in Figures 7 and 8.

Nz * 555% aitan ¥ New
N3 % + A
Kkl k2 ki3 kiT  ki2 ki3 k4

Figure 7. Basic tasks for computing of the value of cubic B-spline at Gauss point z¢.

1 ' E—&k
N. G ¥ Nk2 N'k2 * Eira—in
k3 + +
k k+1 k+2 k+3 k k+1 k+2 k+3
“see ¥ N N2k g5
k+1 k+2 k+3 k+4 k+1 k+2 k+3 k+4

Figure 8. Basic tasks for computing of the value of derivative of cubic B-spline

at Gauss point zq.
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4. Scheduler for concurrent generation
of element local matrices

The generation of element frontal matrices for B-splines of order p involve compu-
tations of values of B-splines and their derivatives at Gauss points followed by the
collection of these values to evaluate the matrix entries. The values of p-th order
B-splines and their derivatives have been decomposed into atomic operations in sec-
tion 3. These operations reduce to a sequence of computations of lower order B-splines
and their derivatives, starting from the linear one. The formulation of matrix entries
is expressed just by the multiplication of values of B-splines and their derivatives by
values of the material data function A (z¢) and Gauss weights.

X =Sk (o, SkeamX

N, 5|x.|= (x.]+ S N...,lx
k,31%c) K, ) k+1,
Bre ke~ Sk are Sra kst e
+
X~— [ ék —X ()
ol Ny 2l x5) S Nyi121%6)
Skes ™6k Skra Sk
pd / \
X 75 ék \ G Ekﬂ €k+4_XG \
G Sk : E Ny olX = T e k+11fo)+E y: NynilXg)
fk+3_fk k+4 Sk+1 k+3~ Sk+1 k+4 " Sk+2
[ Xg—& L Sk ‘
N (x.|=—22K N (x |+ 22 S N (x
k2! %G k, k+1,11%G) +
are ék+2_€k tee Ek+3_ék+l e
’ ¢
- Eein—X k+4~ X [
Xg EkN (x| s 6y (] T NyianlXs)
Srn— Sk e Sk~ Skt k+4  Sk+2
/N VAREAN /N
X~— _ —X ( \
o Ny 1l xg) M Nyi1al %) _k+d4 TG Ny (X6
S Era S SkeaSks2

Figure 9. Scheduling of tasks computing cubic B-spline values at Gaussian quadrature points.

For example, the process of generating the element local matrices for cubic B-
splines is summarized in the following (and sketched in Figure 9). We start by compu-
ting the values of the linear B-splines and their derivatives at the Gassian quadrature
points. The tasks responsible for these computations are named Nk,1, Nk-1,1 and
N’k,1 and N’k-1,1. These tasks are depicted in Figure 9 (in red) and can be exe-
cuted concurrently. In the next step, we utilize previously-computed values of linear
B-splines and their derivatives to compute the values of the quadratic B-splines and
their derivatives. These tasks are named Nk,2, Nk-1,2, Nk-2,2, as well as N’k,2,
N’k-1,2 and N’k-2,2. These tasks are shown in Figure 9 (in green) and can be exe-
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cuted concurrently after all red tasks are finished. In the third step, we utilize the
previously-computed values of the quadratic B-splines and their derivatives to finally
compute the values of the cubic B-splines and their derivatives. The tasks computing
values of the cubic B-splines are named Nk,3, Nk-1,3, Nk-2,3 and Nk-3,3 while
the tasks computing values of the derivatives of cubic B-splines are named N’k,3,
N’k-1,3, N’k-2,3 and N’k-3,3. These tasks shown in Figure 9 (in blue), can be exe-
cuted concurrently after all green tasks are finished. Finally, we compute the values of
matrix entries using values and derivatives of cubic B-splines. These tasks are named
b(Ni,3, Nj,3) where i,j =k, ...,k — 3. They are denoted in Figure 9 in gray, and as
before, all of these tasks can be executed concurrently after all blue tasks are finished.

5. Grammar productions expressing
the multi-frontal solver algorithm

In this section, we introduce the multi-frontal solver algorithm on the simplified ver-
sion of (1-3) one dimensional heat transfer problem. That is
d*u du (1)

=1 (14)

According to the general formulation derived in (1-3), we have set A (x) =1, f (z) =0
and v = 1. The weak formulation can be obtained by substituting to the general
scheme and (4-7). To exemplify how the multi-frontal solver works, we apply this
solution methodology to a six-element discretization where the polynomial order is
linear in all of them. That is, the problem is solved with linear B-splines. We can
derive the global matrix, by computing and collecting all entries of (12-13).

M 0 0 0 0 0 07 [w] T[O0]
1 =2 1 0 0 0 0] u 0
01 -2 1 0 0 0] |us 0
00 1 -2 1 0 0] |ul=1]0 (15)
00 0 1 -2 1 0] |us 0
00 0 0 1 -2 1] |ug 0
o 0o o 0o 0o 1 =1 [u] [-h]

where h is the element’s diameter. We have enforced the Dirichlet boundary condition
ug = 0 in the first row and the Neumann boundary condition u";;:”’l =1 in the last
row. The element frontal matrices are obtained by either computing the entries (12-
13) separately, with integrals projected onto particular elements, or by partitioning
the global system (15) into several sub-matrices.

g R e [ R N ol
- 1R -
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Notice that the local systems (16) are not equivalent to the global system (15) unless
we assemble the system. The multi-frontal solver algorithm merges the first and se-
cond, third and fourth, and fifth and sixth matrices to obtain

1 0 0 U1 0
1 =2 1| |ul =10 (17)
0 1 —1f [us] 10]
-1 1 07 [us] [0]
1 =2 1| |ug| =10 (18)
_0 1 —1_ LUS5 | _0_
-1 1 07 [us] [0
1 -2 1| |ul=1]0 (19)
L 1 —]._ _U7_ _—h

Notice that only the central row is fully assembled for all matrices; in general, the first
and third rows are not fully assembled yet. The only exceptions are the first system,
which has first row fully assembled, and the last system, which has the last row fully
assembled. The multi-frontal solver reorders the system to place the fully-assembled
central row at the beginning. We treat all systems similarly, making no distinction
for the first and last systems. This allows us to apply the same taks to all frontal
matrices. We will eliminate the first and the last row in the final step. The resulting
reordered systems follow:

-2 1 1 Ug 0
0 1 0] |u|=1|0 (20)
10 —-1] |u3] 10
(-2 1 17 [ug] [0]
1 =1 01 [ug] =10 (21)
_1 0 —1_ L U5 | _0_
—2 1 17Tusl TJO
1 -1 0 |us|=1]0 (22)
L1 0 1] [ur] |-h

At this point, the multi-frontal solver algorithm performs the elimination of the first
fully-assembled row. The first row is subtracted from the second and third rows. We
can subtract the fully-assembled row from rows that are not fully assembled, because
the subtraction and additions are interchangeable. That is, we subtract the fully-
assembled row at this point, and in the following step, we add the remaining part of
the non-fully-assembled row. The resulting systems after partial elimination are:

1 —% —% U 0
1 ur| = [0 (23)
0 2 -1l |uws 0
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1 -2 =37 [uw] O

0 -2 1| |us| =10 (24)
0 3 —3]lwl [0

1 -2 —2] [us] [O

0 -1 LI llus|=1]0 (25)
0 3 —g] lw] Lk

Now, we focus on the right bottom 2 x 2 sub-matrices, the part that is still missing
contributions from neighboring elements. These sub-matrices are called the Schur
complements. The multi-frontal solver algorithm merges the first and the second Schur
complement matrices to obtain a new 3 X 3 system

1 0 07 [w 0
3 -1 1 [us| = |0 (26)
0 3+ -1 lus 0

Again, in general, only the central row is fully assembled at this level. We reorder to
put the fully-assembled row at the beginning and obtain

-1 % % us 0
0 1 0] |u|=]0 (27)
10 -1 |us 0

We can eliminate the fully-assembled row by subtracting it from the second and third
rows (which are not fully assembled as of yet) like we did before. This results in

1 —% —% us 0
0 1 0| wm|=]0 (28)
0 1 -1l lus 0

Again, the right bottom 2 x 2 sub-matrix is our new Schur complement. Finally, the
multi-frontal solver algorithm merges the last Schur complement with the third Schur
complement to get the root system

1 0 07w 0
I "1 a2 |w|=]0 (29)
0 1 -3 |ur —h

The root problem is fully assembled, and we can perform the full forward elimination
followed by backward substitution.

10 07 [w 0
01 —2||us| =10 (30)
0 0 1] [ur 6h
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We get the solution with h = %

ur =1 (31)
2 2

us 3U7 3 ( )

up =0 (33)

and we finally proceed with backward substitutions at son nodes

1 1 1
us = §U1 + 5165 = g (34)
=y =t (35)
Ug = 2’U,1 QU?, = 6
=Lt s =1 (36)
Ug = 2u?, QU5 = 2
1 1 5
Ug = §U5+§U7— 6 (37)

This solution strategy can be repeated for higher-order B-spline discretizations of
arbitrary continuity at element interfaces. The process is applied in a similar fashion.
All elemental contributions are computed using the scheduler described in section 4.
These element contributions will be merged with neighboring elements. All rows that
are fully assembled will be placed at the top of the partial matrix and eliminated. The
resulting Schur complements will be assembled at the next level, after all sub-matrices
in this level are partially eliminated. This procedure is applied recursively until the
root system is solved and recursive backward substitution is applied. A scheduler for
these tasks is described in the next section.

6. Scheduler for the solver execution

The multi-frontal solver algorithm discussed in the previous section for linear B-splines
is summarized in Figure 10 (for a problem with eight elements in the domain). Each
element frontal matrix has two rows related to two linear B-splines having non-zero
support over an element. Two Schur complements are merged into new systems, which
is performed by tasks named Pm2. Next, fully-assembled central rows are eliminated,
and this is done by tasks named Pel. The process of merging Schur complements and
eliminating central rows is repeated until we reach the root of the elimination tree,
where the system is fully assembled and can be solved. This is done by a task named
Ps. The root problem solution is followed by backward substitutions. Notice that
there are several tasks working on each level of the assembly tree; in particular, at
the leaf-nodes level, there are N tasks where N is the number of unknowns and
the number of tasks decreases logarithmically down to a single task at root of the
tree. All tasks from each level of the assembly tree can be executed concurrently.
Thus, the total execution time of the solver is log (N). This is because the number
of levels in the assembly tree is equal to the logarithm of the number of elements,
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l/ Pm2
1

5 eliminate Pel
9

1 eliminate boundary nodes Ps

9

Figure 10. Scheduling of tasks for multi-frontal solver execution for linear B-splines.

which is proportional to the number of degrees of freedom. Moreover, we perform
O(1) operation at each node of the assembly tree.

For quadratic B-splines, the situation is little different (as illustrated in Figu-
re 11). The element frontal matrices have three rows in this case, since there are
three B-splines with support over each element. Thus, in the first step of the algo-
rithm, the solver executes several Pm3 tasks responsible for merging three element
frontal matrices. This is followed by the execution of several Pel tasks responsible
for elimination of 1 central fully-assembled row. In the following steps, the algorithm
merges two Schur complements from son nodes (tasks Pm2) and eliminates two fully-
assembled rows (tasks Pe2). At the root, there are four fully-assembled rows, and the
fully system can be solved by Ps task followed by backward substitution.

In general, when we utilize B-splines of order p with continuity p — 1, we need to
first merge p+1 frontal matrices, and we can eliminate one central row. In the following
steps, we merge two Schur complements and eliminate p central fully-assembled rows.
Finally, we get the root problem of size 2p that is solved and followed by backward
substitution. The procedure is also illustrated for cubic B-splines in Figure 12. The
computational complexity of the solver for order p is p*log (N/p). This is because
the number of levels in the assembly tree is equal to the logarithm of the number of
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Figure 11. Scheduling of tasks for multi-frontal solver execution for quadratic B-splines.
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3 eliminate boundary nodes PS
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Figure 12. Scheduling of tasks for multi-frontal solver execution for cubic B-splines.

elements, which is equal to the number of degrees of freedom divided by the polynomial
order p. Moreover, the size of each frontal matrix is O(p), and we need to subtract p
rows from the following rows (which can be done in O(p?)).

7. Numerical results

We conclude the paper with numerical results obtained with grammar-based imple-
mentation of the derived methodology on NVIDIA CUDA GPU. The numerical tests
were performed on GeForce GTX 260 graphic card with 24 multiprocessors.
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Figure 13. Execution time measured on GPU for linear B-splines.
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Figure 14. Execution time measured on GPU for quadratic B-splines.
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Figure 16. Execution time measured on GPU for fourth order B-splines.
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Figure 17. Execution time measured on GPU for fifth order B-splines.
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Figure 18. Comparison of GPU execution times for different orders of B-splines.
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Figure 19. Comparison of GPU execution times for different orders of B-splines on log-log

scales.
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Figure 20. Comparison of GPU execution time with MUMPS solver CPU execution time for
linear B-splines.
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Figure 21. Comparison of GPU execution time with MUMPS solver CPU execution time for
quadratic B-splines.
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Figure 22. Comparison of GPU execution time with MUMPS solver CPU execution time for
cubic B-splines.
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Figure 23. Comparison of GPU execution time with MUMPS solver CPU execution time for
quartic B-splines.

Each equipped with 8 cores. The total number of cores is equal to 192. The global
memory on graphic card was 896MB.

The numerical experiments were performed for linear, quadratic, cubic and qu-
artic, and quintic B-splines (as illustrated in Figures 13—17). We report the execution
time spent on local matrix generation and execution of the multi-frontal solver. The
comparison of execution time for different orders of B-splines is summarized in Figure
18 and 19 with log-log scale.

The numerical experiments were performed for linear, quadratic, cubic, quartic,
and quintic B-splines (as illustrated in Figures 13-17). We report the execution time
spent on local matrix generation and execution of the multi-frontal solver. The com-
parison of execution time for different orders of B-splines is summarized in Figure 18
and 19 with log-log scale.

Our implementation is fast and scalable, attaining the expected logarithmic sca-
ling predicted by the theory. However, there are a few issues that need to be discussed.

1. As the reader may notice, in most cases (all but quartics) frontal matrices gene-
ration takes twice as long to solve the equation. The reason for this is that the
multi-frontal solver was quite well-optimized for global memory access. Almost
all global memory reads and writes are coalesced. After the data is read, it is
stored in shared memory where computations are very fast. After processing in
shared memory, data is stored back in global memory in such a way that the next
read will also be coalesced. This way, we minimize memory transactions which
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gives us this boost. We could not achieve this level of uniform access to global
memory in both steps. We chose memory layout which is better for multi-frontal
solver; but for generating matrices, some scattered reads and writes are required.

2. Figures 16 and 19 show that, for quartics, multifrontal solver scales logarithmi-
cally, but it is slower than in other cases. The reason for this is that, for p equals
four, data fill shared memory in a poor way, and the number of running thread
blocks must be higher to process all frontal matrices in separate blocks.

3. One last thing worth noting is that, for quadratics (Figure 14) for 1536 elements,
the time needed to generate matrices drops. It happens in every consecutive run
of the solver. Our conclusion is that, in this case, data can be divided optimally
into blocks without any reminder for more steps, and additionally, multiprocessor
cache is used in a better way.

8. Comparison to MUMPS in one dimension

In this section, we present a comparison of our one-dimensional solver with a state-
of-the-art MUMPS solver [1, 2, 3] executed on an Intel Core 2 Duo E8500 CPU with
3.16 GHz. The comparison is presented in Figures 20-23 for linear, quadratic, cubic,
and quartic B-splines.

From the presented comparison, the implication is that our solver delivers loga-
rithmic execution time, while MUMPS solver delivers quadratic execution time, and
our solver is always faster for a large number of elements. The MUMPS solver is faster
for a small number of elements for quadratic, cubic, and quartic B-splines (since it is
a highly-optimized code). Notice the logarithmic scale on the horizontal axis which
implies, for example, the following: for quartic B-splines presented in Figure 23, the
MUMPS solver is faster up to 500 elements, but it is slower from 500 up to 2500
elements (where we finished our experiment). For a large number of elements, our so-
lver is two orders of magnitude faster for linear B-splines and one order of magnitude
faster for quartic B-splines.

9. Conclusions

We introduced the methodology for concurrent integration and solution of linear sys-
tems produced by B-spline-based finite elements delivering higher-order global conti-
nuity of the solution. The methodology deliver logarithmic execution time for poly-
nomial orders p = 1,2,3,4, 5 that is C%linears, C'-quadratic, C?-cubic, C3-quartics
and C*-quintics. The developed model was implemented and tested on a NVIDIA
CUDA GPU confirming the logarithmic scalability.

The extension of the model to two-dimensional problems is already described in
the paper [16]. Future work will include the extension of the methodology to two- and
three-dimensional problems.
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