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USING SHARED MEMORY AS A CACHE
IN CELLULAR AUTOMATA
WATER FLOW SIMULATIONS ON GPUs

Abstract Graphics processors (GPU – Graphic Processor Units) recently have gained

a lot of interest as an efficient platform for general-purpose computation. Cel-

lular Automata approach which is inherently parallel gives the opportunity

to implement high performance simulations. This paper presents how shared

memory in GPU can be used to improve performance for Cellular Automata

models. In our previous works, we proposed algorithms for Cellular Automata

model that use only a GPU global memory. Using a profiling tool, we found

bottlenecks in our approach. With this paper, we will introduce modifica-

tions that takes an advantage of fast shared memory. The modified algorithm

is presented in details, and the results of profiling and performance test are

demonstrated. Our unique achievement is comparing the efficiency of the same

algorithm working with a global and shared memory.
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1. Introduction

Cellular Automata is a modeling paradigm for simulating a variety of natural phe-

nomena and physical processes [1, 2]. It models a physical system as a lattice of

cells that are characterized by a specific set of states that change according to certain

rules of local interactions. The most important advantage of this approach is the

ability to construct very fast and conceptually simple algorithms. Moreover, Cellu-

lar Automata can be easily parallelized just by simple static domain decomposition.

Additionally, the amount of data that has to be exchanged between computational

nodes is relatively small, since a neighbourhood is limited to the nearest cells. All

these features provide the opportunity for effective implementation of the model on

the GPU platform.

In recent years, the computing power of GPUs increased rapidly surpassing, in

some applications, the performance of general purpose processors. This has led to the

conclusion that GPU can be also utilized for general purpose computing (GPGPU

General-Purpose Computing on Graphics Processing Units) [3, 4]. When the problem

fits into GPU computing architecture, the benefits of its use can greatly exceed the

capabilities of CPU. In addition, GPUs can be also used in combination with tra-

ditional CPU platform (see examples in [5, 6]). In this case, the part of the model

that can be efficiently processed by GPU have to be extracted from a whole. In most

cases, as the GPU has a very specific architecture. the algorithms that solve the given

problem have to be redesigned or implemented “from scratch”.

Initially, the GPU computations were implemented using languages that were

originally designed to write code for vertex and pixel shaders units: HLSL (High

Level Shading Language), GLSL (OpenGL Shading Language) and Cg (C for graph-

ics). The main drawback of these languages is the fact that their instructions and data

structures are designed for graphics processing. In case of general purpose computing

the necessary types of data have to be emulated. In order to meet the needs of devel-

opers who wanted to use the computing power of GPUs, NVIDIA announced in 2007,

the CUDA (Compute Unified Device Architecture) [7] architecture with a dedicated

“C for CUDA” programming language. For the same purpose, the Khronos Group in

2008 presented an open programming environment OpenCL (Open Computing Lan-

guage) [8]. The goal of this project is to provide a unified programming environment

for creating programs that use various computational resources available in modern

computers: CPU units as well as GPU units. Both tools allow easy programming of

the GPU for any type of computational problems.

The CUDA and OpenCL provide methods to access various types of memory.

The most important differences between them are throughput and latency. Global

memory is accessible by all threads without any limits and programmer uses this

memory in a very simple way. This type of memory is implemented outside the

chip what makes that its efficiency is lower than shared memory (or local memory

in OpenCL nomenclature). Shared memory stores data that are local for kernels

and are accessible only by threads that belong to the same workgroup. Physically,
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this memory is usually located on-chip what makes that its throughput and latency

are comparable to registers. High efficiency makes that, it is worth to modify the

algorithms of the model to use local memory as a cache.

In [20] we presented a Cellular Automata model of water flow running in GPU

environment. Our model was implemented with OpenCL framework. We have fo-

cused on adapting the algorithm to the specifics of the graphics processor. As the

tests showed the performance of our GPU implementation significantly (up to sev-

eral hundreds times) exceed basic sequential CPU version. At that stage we did

not evaluate how different types of memory: global and shared can influence the

performance. In the current paper, we present a new version of the algorithm that

exploits shared(local) memory and evaluates its performance. Our goal was to find

an algorithm that efficiently uses the properties of the CUDA platform and OpenCL

framework. We used the profiling tools to identify the bottlenecks in our first algo-

rithm. Based of these analyzes, we propose the modifications that eliminate the weak

points.

This paper is organized as follows. The next section presents several related

works. Section 3 describes briefly the original algorithm. In subsection 3.1 we present

the changes made to the algorithm to run on the GPU using global memory. The

results of profiling are presented and discussed at the end of this subsection. Sub-

section 3.2 shows the modifications that are introduced to the algorithms in order

to use fast shared memory as a cache. The performance of both algorithms (with

global and shared memory) are presented and discussed. At the end, we summarize

our achievements.

2. Related works

Graphics Processor Units (GPU) are specialized for processing in parallel a large

amount of data with regular structure, i.e. set of vertices that constitute a graphic

scene. Cellular Automata has similar features, e.g. large amount of cells are organized

in a regular grid with the same rules applied to each cell. The use of graphics proces-

sors for the simulation with the use of Cellular Automata is presented and discussed

in many papers.

Rybacki et al. [9] investigated seven different simulation algorithms (two of them

were GPU-run algorithms) for cellular automata and compared them for a few well-

known CA rules (e.g. Game of Life, Parity). He concludes their article with statement

that the usefulness of GPU-based Cellular Automata algorithms strongly depends on

the models that we want to simulate.

Gobron et al. ([10, 11]) applied cellular automata in computer graphics for vi-

sualization and creating various surface effects like automatic texturing and creating

surface imperfections. Their models were implemented for GPUs with GLSL lan-

guage and gained performance up to 200 times better than CPU implementations.

In [12], the same author demonstrated that the Cellular Automata model of a retina

implemented for GPUs was at least 20 times faster than one with a classical CPU.
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Bilotta et al. [13] demonstrated how the Cellular Automata model of lava flow

(MAGFLOW model [14] ) can be ported to CUDA environment. The MAGFLOW

model is relatively complex and include several factors as ground elevation, lava thick-

ness, heat quantity, temperature, and amount of solidified lava. Processing is divided

into several-stages pipeline, each of them implemented as a separated kernel. The

authors have devoted much attention to the optimal use of different types of memory,

but does not discuss other scenarios of their use. The next paper from this team [15]

focused on using multiple-GPUs systems.

Ferrando et al. [16] used a GPU hardware to implement the Cellular Automata

model of evolving surfaces during wet etching. This model use global memory as well

as shared memory but the authors does not discuss how it influences the performance.

Quesada-Barriuso et al. [17] presented two versions of the Cellular Automata

based watershed algorithm. This algorithm is widely used for non-supervised image

segmentation. The authors compare the traditional approach based on synchronous

updating with a new method in which the automata is updated asynchronously. The

new algorithm uses shared memory to store pixels during the calculation. Unfortu-

nately, the authors consider only this one variant of using the shared memory.

Miao et al. [19] demonstrated how GPU can be applied for modelling pedestri-

ans evacuation. Their Cellular Automata model exploits various types of memory

provided by CUDA platform but the authors do not discuss how it influences the

efficiency.

Caux et al. [18] compared the performance of global memory and shared mem-

ory using simple Cellular Automata heart model. They significantly simplified the

implementation that uses shared memory. The data are copied from global memory

to shared memory before computing new states but the threads handling cells at the

border are not used to compute the next state.

Although the advantages of shared memory are emphasized in most publications

relatively little space is devoted to the analysis of the potential benefits of its use.

3. Model of water flow

Cellular Automata algorithm presented in this paper, simulates flow of water through

the terrain. It is based on a model of lava flow developed by Di Gregorio et al [21].

The algorithm was adapted to model water flow [22] and later it was applied to model

anastomosing river phenomena [23, 24, 25].

The Cellular Automata for modeling water flow is defined as follows:

CAFLOW = 〈Z2, Ai, Ao, X, S, δ〉 (1)

where:

• Z2 — set of cells located on regular mesh and indexed by (i, j);

• Ai ⊂ Z2 — set of inflows;

• Ao ⊂ Z2 — set of sinks;
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• X — Moore neighbourhood;

• S = {(gi,j , wi,j} — set of parameters;

g — terrain altitude,

w — amount of water,

• δ : (gti,j , w
t
i,j)→ (gt+1

i,j , wt+1
i,j ) — set of rules of local interactions.

A regular grid of cellular automata represents a terrain through which water

flows. Arbitrary defined cells act as sources that supply water to the system. At each

step of simulation, the amount water in these cells is supplemented to a fixed value.

Similarly, another group of cells acts as drains and removes water from the system.

The flow of water is driven by the difference of water level in cells. The water

level in a particular cell is calculated as the sum of terrain altitude g and amount of

water w. The rule that we applied to each cell is trying to equalize the level of water

in this cell and its neighbours.

w

g

Figure 1. Distribution of water between surrounding cells.

The key part of the model is the algorithm that calculates an exchange of wa-

ter between neighbouring cells (called level minimization algorithm). The algorithm

calculates an expected average level of water in central cell and its neighbours. The

pseudocode of this algorithm is presented in Algorithm 1.

The water level in central cell is denoted as the sum of the water amount w (which

can be distributed to the neighbours) and the terrain altitude q[0] (which cannot be

changed). The water levels in four neighbouring cells are denoted as q[1]...q[4]. The

algorithm calculates an average level for all these cells (lines from 8 to 13). Next, the

cells with water level higher than the newly calculated average level are eliminated

from further calculation (lines 15 to 20). These operations are repeated as long as

a cell can be eliminated (variable newControl in line 21). Finally, for all not eliminated

cells the new average level is calculated and the amount of water that has to be moved

from the central cell is calculated and stored in f table (lines from 22 to 28).
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Algorithm 1 Original algorithm calculating flow on cellular automata.

Require: w, q[0 . . .m]

Ensure: average, f [0 . . .m]

1: for i = 0→ m do

2: eliminated[i]← false

3: end for

4: newControl← false {Calculate new average level}

5: repeat

6: qSum← w

7: count← 0

8: for i = 0→ m do

9: if ¬eliminated[i] then

10: qSum← qSum+ q[i]

11: count← count+ 1

12: end if

13: end for

14: average← qSum/count

15: for i = 0→ m do

16: if q[i] > average ∧ ¬eliminated[i] then

17: newControl← true

18: eliminated[i]← true

19: end if

20: end for

21: until ¬newControl

22: for i = 0→ m do

23: if eliminated[i] then

24: f [i]← 0

25: else

26: f [i]← average− q[i]

27: end if

28: end for

The algorithm in this version is not optimized for execution on the GPU ar-

chitecture due to the conditional statements that may serialize the execution of the

code.

3.1. Implementation for GPU with global memory

The model with algorithms that uses global memory is in details presented in [20].

Here we recall only the main characteristics of this algorithm. The regular lattice

of cellular automata is simple mapped onto the 2-dimensional grid of threads. The

lattice is divided into regions of size 16 × 16 cells. The same size has workgroups

of threads. Each thread processes and updates one cell but uses data from four

neighbouring cells. Threads that are located at the edges of workgroup area have to
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access to cells that are assigned to other workgroups. When we use global memory,

it is not an issue — such the transactions are transparent to the programmer.

For implementing the model on GPU the original algorithm has been redesigned

[20]. The “reversed” algorithm (see Algorithm 2) takes the following data:

• w — contains amount of water in central cell,

• q[0] — contains only terrain altitude for central cell,

• q[1] . . . q[m] — stores water level (ground and water) for all neighbouring cells.

The value of m may vary from 5 (von Neumann neighbourhood) to 9 (Moore

neighbourhood) — in our implementation we use von Neumann neighbourhood. The

cells are initially sorted according to their water level q[i]. Next, in the loop i: 0→ m

the average level for the first i elements is calculated. The loop is repeated as long as

the condition is met: i ∗ q[i] ≤∑i

j=0 q[j]. The result of calculations is stored in table

f , which contains the amount of water that has to be moved from the central cell to

the selected neighbours.

Algorithm 2 “Reversed” algorithm for calculating new average level of water.

Require: w, q[0 . . .m]

Ensure: average, f [0 . . .m]

1: qSorted← sortAscending(q,m)

2: i← 0

3: qSum← 0

4: while (i < m) ∧ (w ≥ i · qSorted[n]− qSum) do

5: qSum← qSum+ qSorted[i]

6: i← i+ 1

7: end while

8: average← (qSum+ p)/i

9: for j = 0→ m− 1 do

10: f [j]← max(0, average− q[j])

11: end for

The flow values (f table) are accumulated in a global table. At the end of a single

step of simulation that table contains the amount of water that has to be added or

deducted from the w parameter (the water amount) of each cell.

The algorithm presented above has been implemented as two OpenCL kernels

executed sequentially for each cell:

1. gpu best levels, (see Listing 1), calculates expected average level in central cell

and its neighbours. The results are stored in best levels[] table,

2. gpu distribute, (see Listing 2), basing on the content of the best levels[]

table update water amounts in all cells.

The use of global memory made the code of both kernels very simple. The

calculations are performed without branch instructions — if necessary selection was

“emulated” with built-in functions step (step(x, y) return 0.0 if x < y, else 1.0) and

max. Also a short loop while is replaced by the sequence of instructions. The sorting
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function was also realized as a static sorting network for a five elements table. The

Cellular Automata data (terrain altitude g, amount of water w) were stored in global

memory. The kernels simple copy necessary data from global memory to private

variables (float q[5] table) or directly index global tables (e.g. level, best level).

Each kernel reads from its own central cell and from four nearest neighbours and

write to its own cell. Due to regular data and local neighbourhood the memory

coalescing was achieved almost automatically. We do not have to introduce any

special optimization to effectively utilize the bandwidth.

k e r n e l void gpu b e s t l e v e l s ( g l o b a l f loat l e v e l [ ] ,
g l o b a l f loat t e r r a i n [ ] ,
g l o b a l f loat b e s t l e v e l s [ ] ) {

int x = g e t g l o b a l i d ( 0 ) , y = g e t g l o b a l i d ( 1 ) ;
int w = g e t g l o b a l s i z e ( 0 ) , h = g e t g l o b a l s i z e ( 1 ) ;

f loat q [ 5 ] ;
q [ 0 ] = t e r r a i n [ x + y∗w ] ;
q [ 1 ] = l e v e l [ x + (y − 1)∗w ] ;
q [ 2 ] = l e v e l [ ( x − 1) + y∗w ] ;
q [ 3 ] = l e v e l [ ( x + 1) + y∗w ] ;
q [ 4 ] = l e v e l [ x + (y + 1)∗w ] ;
b e s t l e v e l s [ x + y∗w] = b e s t l e v e l ( l e v e l [ x + y∗w] , q ) ;

}

f loat b e s t l e v e l ( f loat w, f loat q [ ] ) {
f loat qSum = w − q [ 0 ] ;
s o r t 5 (q ) ;
qSum += q [ 0 ] ;
int i =1;
t = step (q [ 1 ] , qSum ) ; qSum += t ∗q [ 1 ] ; i += t ;
t = step (q [ 2 ] ∗ 2 , qSum ) ; qSum += t ∗q [ 2 ] ; i += t ;
t = step (q [ 3 ] ∗ 3 , qSum ) ; qSum += t ∗q [ 3 ] ; i += t ;
t = step (q [ 4 ] ∗ 4 , qSum ) ; qSum += t ∗q [ 4 ] ; i += t ;

return qSum/ i ;
}

void s o r t 5 ( f loat a [ ] ) {
#define SWAP( i , j ) { f loat t=min ( a [ i ] , a [ j ] ) ;

a [ j ]=max( a [ i ] , a [ j ] ) ; a [ i ]= t ;}
SWAP(0 , 1 ) ; SWAP(3 , 4 ) ; SWAP(2 , 4 ) ;
SWAP(2 , 3 ) ; SWAP(0 , 3 ) ; SWAP(1 , 4 ) ;
SWAP(0 , 2 ) ; SWAP(1 , 3 ) ; SWAP(1 , 2 ) ;

#undef SWAP
}

Listing 1: Source code of the gpu best levels(...) kernel functions

k e r n e l void gpu d i s t r i bu t e ( g l o b a l f loat l e v e l [ ] ,
g l o b a l f loat t e r r a i n [ ] ,
g l o b a l f loat s ou r c e s [ ] ,
g l o b a l f loat b e s t l e v e l s [ ] ) {
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int x = g e t g l o b a l i d ( 0 ) , y = g e t g l o b a l i d ( 1 ) ;
int w = g e t g l o b a l s i z e ( 0 ) , h = g e t g l o b a l s i z e ( 1 ) ;
f loat a l e v e l = l e v e l [ x + y∗w ] ;
f loat a t e r r a i n = t e r r a i n [ x + y∗w ] ;
f loat change = sourc e s [ x + y∗w ] ;
change += max(0 , b e s t l e v e l s [ x + (y − 1)∗w] − a l e v e l ) ;
change += max(0 , b e s t l e v e l s [ ( x − 1) + y∗w] − a l e v e l ) ;
change += max(0 , b e s t l e v e l s [ ( x + 1) + y∗w] − a l e v e l ) ;
change += max(0 , b e s t l e v e l s [ x + (y + 1)∗w] − a l e v e l ) ;
change += max( a t e r r a i n , b e s t l e v e l s [ x + y∗w) − a l e v e l ;

l e v e l [ x + y∗w] = max( change + a l e v e l , a t e r r a i n ) ;
}

Listing 2: Source code of gpu distribute(...) kernel function

Nvidia CUDA Toolkit provides profiling tools that give us insight into what way

the memory transactions are performed. We used them to analyse how efficiently

our algorithm uses the global memory. We tested GPU with Compute Capability 1.2

and grid with 512 by 512 cells (see Table 1). The store operations were performed

optimally as 64-byte transactions. It comes from fact that each thread saves calculated

data only once, in cell that is directly assigned to this cell (see Listing 1, line 13 and

Listing 2, line 16).

Table 1

The results of profiling session for device with CC 1.2 and grid size 512× 512.

Compute Capability: 1.2. Workgroup size: 16× 16 threads.

Grid size: 512× 512 cells. No. of workgroups: 1024.

Global no. of transactions Transactions/workgroup

S
to
re 32B 64B 128B 32B 64B 128B

gpu best levels 0 16384 0 0 16 0

gpu distribute 0 16384 0 0 16 0

Comment:
Both kernels perform one write operation. Optimal transaction has size 64B=16× 4B
float number. Optimal amount of transactions can be calculated as follows: 512×512

16
of

64B transactions. Profiling confirms that store operations are realized in the optimal
way.

Global no. of transactions Transactions/workgroup

L
oa

d 32B 64B 128B 32B 64B 128B

gpu best levels 16384 81920 16384 16 80 16

gpu distribute 16384 114688 16385 16 112 16

Comment:
Kernel gpu best levels read data from two tables (level and terrain; see Listing 1)
and kernel gpu distribute read data from three tables (level, terrain and sources;
see Listing 2). Theoretical, non-redundant number of 64B reads should be:
2× 16× 1024 = 32 768 (32 per workgroup) for gpu best levels and
3× 16× 1024 = 49 152 (48 per workgroup) for gpu distribute. It is respectively 29%
and 33% of total transactions calculated during profiling.
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There is more complicated situation with “load” operations. Each thread read

data from its own cell and from four neighbouring cells. Figure 2 presents how these

transactions are realized. Data read from central cell and its neighbours (operations

1, 2, and 3) above and below are coalesced as 64B transaction. Transactions of type

4 are not aligned to the boundary of 64B, and do not fall into 128B block. Thus,

they are realized as one 32B transactions and one 64B transactions. Transactions of

type 5 also are not aligned to the boundary of 64B, but they can be realized by 128B

transactions. As it is shown in Figure 2, the transactions of type 4, an 5 are used only

partially for transferring the useful data. We have also a lot of redundant transactions

from global memory — each cell is transferred four times. Using the (shared) local

memory as a cache would significantly improve the performance.

Transaction 64B

Tran. 32B

1. 2. 3.

4. 5.

Transaction 64B Transaction 64B

Transaction 64B Transaction 128B

Figure 2. Read transactions performed by the algorithm.

3.2. Implementation with local memory

In the similar way as in the implementation with global memory, we defined two

kernels that are sequentially executed for each cell:

• wfca best levels — calculates the expected average level of water in central

and neighbouring cells,

• wfca distribute — calculates the exchange of water between cells according to

the previously calculated average level.

In order to use local memory, we introduced the following modifications in the

code of the kernels:

• each thread in a workgroup reads its own cell and stores it in local memory where

it is accessible for other threads in this workgroup,

• during calculation the data referring to the neighbouring cell are read from local

memory,
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• the selected threads have to additionally read neighbouring cells that lie outside

the area assigned to this workgroup.

The general form of the algorithm remains the same. Modifications are connected

with loading data thus we present only changes that have to be applied to both kernels.

The following declaration allocate buffer in local memory (shared memory in

CUDA terms):

const int BUFFER H = 18 ;
const int BUFFERW = 19 ;

l o c a l f loat bu f f e r [BUFFERW ∗ BUFFER H ] ;

Width of buffer (BUFFER W) is chosen to prevent bank conflicts when half-warp

accesses local memory. Cells in one row can be accessed in parallel as they are located

in different banks.

1st warp, threads 0-15

1st warp, threads 16-31

2
n
d
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a
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Figure 3. Threads located at the edge of the workgroup have to read additional data from

area assigned to other workgroups (for the clarity workgroups has size limited to 8× 8).

The code beneath implements loading data for cells that are assigned to this

block of threads — green area in Figure 3:

int l x = g e t l o c a l i d ( 0 ) , l y = g e t l o c a l i d ( 1 ) ;
int sx = g e t l o c a l s i z e ( 0 ) , sy = g e t l o c a l s i z e ( 1 ) ;
bu f f e r [ ( l x + 1) + ( ly + 1)∗BUFFERW] = l e v e l [ x + y∗w ] ;

Some threads have to execute a different branch of code and read cells that

assigned to other workgroups. Normally, it causes that thread will not be executed

in parallel (if they are in the same warp). We organized processing in our code in

this way that such the threads are grouped into two warps. We use the threads from
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the first four rows of the workgroup to read additional cells that lie outside the block

(see Fig. 3). We expect that it minimizes the chance of serialized execution. Warp

is formed by threads with sequential indices, i.e. threads 0–31 form the first warp,

threads 32-63 form the next and so on. Within the half-warp (16 threads), the threads

should execute the same path of execution, i.e. read data for 16 cells in row or column.

The code beneath implement this method:

i f ( l y == 0 | | l y == 1 ) { //One warp : 2∗16 thread
int gy = y − l y ;
int tb = ( sy+1)∗ l y ;
//row below and beneath ( ye l l ow reg ion )
bu f f e r [ ( l x+1) + ( tb )∗BUFFERW] = l e v e l [ x + (gy−1+tb )∗w ] ;

} else i f ( l y == 2 | | l y == 3) { //Second warp : 2∗16 thread
int gy = y − ly , gx = x − l x ;
int l r = ( sx+1)∗( l y & 1 ) ;
// l e f t and r i g h t column ( red reg ion )
bu f f e r [ ( l r ) + ( lx+1)∗BUFFERW] = l e v e l [ ( gx−1+l r ) + ( gy+lx )∗w ] ;

}

We must ensure that no part of the working group did not try to read the data

that has not yet been stored in local memory. For this purpose, we use the local

barriers that synchronize all threads:

ba r r i e r (CLK LOCALMEM FENCE) ;

In theory, this version should use the following number of transaction in global

memory:

• 16× 64B transactions for cells assigned to workgroup (green area),

• 2× 64B transactions for below and beneath the workgroup area (yellow area),

• 32× 32B transactions for left and right edge of the workgroup area (red area),

• 16× 64B transactions that read terrain table.

In summary, we have 32 + 34 = 66 transactions what is better than version with

global memory, which has to do 16 + 5× 16 + 16 = 112 transactions. Profiling results

acknowledge these predictions (see Table 2).

Table 2

Number of transactions performed by version using shared memory. Grid has 512 × 512

cells and workgroup has 16 × 16 threads (1024 workgroups).

Kernel
Loads 32B Loads 64B Store 64B

#32B per w-g #64B per w-g #64B per w-g

wfca best levels 32768 32 34816 34 16384 16

wfca distribute 32768 32 67584 66 16384 16
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4. Results

Our implementations were developed and tested on several Nvidia graphic cards. This

producer provides good support for programmers on Linux platform, thus perfor-

mance evaluation and profiling analysis was made for these processors. The features

of tested processors are enumerated in Table 3.

Table 3

Some technical parameters of graphics cards used in tests.

GPU No of cores Compute Capability Memory Bandwidth

Nvidia Geforce 9800 GT 112 1.0 57.6 GB/s

Nvidia Quadro NVS 140M 16 1.1 11.2 GB/s

Nvidia Quadro FX 4800 192 1.3 76.8 GB/s

Nvidia Geforce GTX 295 2×240 1.3 223 GB/s
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Figure 4. Performance achieved by algorithm with shared memory on several tested GPU

compared to single core Intel i5.

Figure 4 presents best performance achieved for algorithm using shared memory.

Program was tested on selected GPU and compared with their version for traditional

CPU (Intel i5 2.8 GHz). The weakest GPU in our tests, Nvidia Quadro NVS 140M,

outperforms CPU more 10 times. The most powerful GPU we tested, Nvidia Geforce

GTX295, is about 250 times better than CPU. All GPUs present relatively lower
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performance for small size of lattice. It comes from the fact that such a small Cellular

Automata is not able to fill all the processing units that GPUs provide.

L
o
c
a
l
v
s
g
lo
b
a
l

100

1000

10000

100000

16 32 64 128 256 512 1024

A
v
e
ra
g
e
n
o
o
f
s
te
p
s
p
e
r
s
e
c
o
n
d

Mesh dimension

Nvidia Quadro 4800 FX

Global memory
Shared memory

16 32 64 128 256 512 1024

1

1.25

1.5

1.75

10

100

1000

10000

100000

16 32 64 128 256 512 1024

A
v
e
ra
g
e
n
o
o
f
s
te
p
s
p
e
r
s
e
c
o
n
d

Nvidia Quadro NVS 140M

Global memory
Shared memory

16 32 64 128 256 512 1024

1.5

2

2.5

3

100

1000

10000

100000

16 32 64 128 256 512 1024

Nvidia Geforce 9800GT

Global memory
Shared memory

16 32 64 128 256 512 1024

1.5

2

2.5

3

3.5

4

4.5

L
o
c
a
l
v
s
g
lo
b
a
l

1000

10000

100000

16 32 64 128 256 512 1024

Nvidia Geforce GTX 295

Global memory
Shared memory

16 32 64 128 256 512 1024

1

1.5

Mesh dimension

Figure 5. The comparison of the algorithm performance for different GPUs. Each chart

demonstrates performance for algorithms with global and local memory. Performance ratio

is also included (thick line).

Figure 5 demonstrates the benefits of using the algorithm with shared mem-

ory. The Nvidia Quadro NVS 140M chip is optimized for laptops and for low power

consumption. Additionally, graphic card uses part of system memory as their own

(Nvidia TurboCache technology). Version with shared memory is more than twice

better than version with global memory. This GPU has only 16 stream processors,

and this is the main reason of its low performance — the improvement resulting from

the use of shared memory cannot be overstated.

The biggest gain from the use of shared memory we received for the Geforce 9800

GT (Nvidia G86 processor) card. The algorithm with shared memory is more than

four times better then version with global memory. The benefit comes from bigger

difference in bandwidth between global and shared memory. Nvidia Quadro FX 4800

(GT200GL chip) has a higher memory bandwidth, and the algorithm with shared

memory is only up to 1.7 times better. The same trend is observed in the case of

Nvidia Geforce GTX 295 (which is, in fact, a dual GT200 processor). This graphic

card has 223 GB/s of theoretical bandwidth, and local memory version is only up to

1.2 times better than the version with the global memory.
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5. Conclusions

In this paper, we have shown that GPUs can be used to accelerate the modeling of

a physical phenomena with Cellular Automata paradigm. In our previous work [20]

we present simple but very efficient algorithm that uses GPU and global memory.

In this work we concentrate on efficient use of shared memory. We proposed mod-

ifications that allow to use the power of shared memory. Using a profiling tool, we

found the bottleneck of our previous algorithm, which was redundant access to global

memory. We decided to introduce the modifications that use fast shared memory as

a cache. Efficient use of shared memory requires a thorough knowledge of its struc-

ture and operation. Our modifications take into account the special structure of this

memory and do not introduce excessive overhead of operations. As the result, this

implementation appeared to be up to four times better than previous one.

The unique result of our works is the comparison how the same algorithm behaves

when only a global memory is used and when the shared memory is exploited. Our

tests showed that efficient global memory can significantly reduce the profits from the

application of shared memory, used even in most optimized manner.

Processors with Compute Capabilty 2.0 and higher (e.g. Fermi architecture) have

cache for all transactions in global memory. We plan to carefully check whether these

capabilities can effectively compete with manually managed shared memory.

Our future works will also focuse on searching for other ways of optimizations.

We plan to investigate other mapping schema, e.g. one work-item is processing many

cells or the work-group has shape other than square.

The algorithms can be used in the future as a basis for other models of flow

phenomena like the flow of water, lava or mud. Moreover, the shared memory man-

agement schema we use in our algorithm can be also efficiently used in another cellular

automata model implemented on GPU.
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