
Axel Tenschert
Roland Kübert

SLA-BASED JOB SUBMISSION
AND SCHEDULING WITH
THE GLOBUS TOOLKIT 4

Abstract High performance computing is nowadays mostly performed in a best effort

fashion. This is surprising as the closely related topic of grid computing, which

deals with the federation of resources from multiple domains in order to support

large jobs, and cloud computing, which promises seemingly infinite amounts of

compute and storage, both offer quality of service (QoS), albeit in different ways.

Long-term service level agreements (SLAs), which require the establishment of

SLAs long in advance of their actual usage, seem a promising way for the offering

of QoS guarantees in an HPC environment in a way that is not disruptive to the

business models employed today. This work uses the long-term SLA approach

as a basis for the provisioning of service levels for HPC resources and presents

an SLA management framework to support this. Flexibility is provided by

providing SLAs with different service levels, support for which is integrated

into job submission and scheduling. The SLA management framework can, on

a high level, be used in a generic fashion and an implementation is presented

that is evaluated against a motivating scenario.

Keywords service level agreements, service-oriented architecture, grid computing,

semantic matching

2012/11/21; 18:57 str. 1/22

Computer Science • 13 (4) 2012 http://dx.doi.org/10.7494/csci.2012.13.4.183

183

1. Introduction

High performance computing (HPC) has traditionally been provided in a best effort

manner, meaning that no quality of service (QoS) guarantees were given to users.

Developments coming out of the grid computing domain and, more recently, efforts

from the cloud computing domain, show the possibility to provide QoS guarantees

for HPC-like scenarios. While cloud computing, with its notion of basically infinite

resources, comes in some aspects close to state of the art HPC resources, it simply

cannot be used to solve certain problems. This is mainly due to the fact that special-

ized network interconnects, which are a core feature of HPC resources, are as of yet

not possible in cloud scenarios.

For the description, provisioning and enforcement of QoS terms, service level

agreements (SLAs) have been a popular tool. Thus, they lend themselves for usage

in the HPC domain as well. Especially in grid computing, SLAs enjoy widespread

usage and countless approaches have been proposed and several implemented. For

cloud computing, SLAs are not that prominent and exist in a much simpler form than

those proposed for grid computing applications. In the HPC area, little has been done

regarding SLAs as there was no real requirement since best effort service prevailed.

In order to realize QoS in an HPC environment, SLAs can only serve as a tool.

HPC providers mainly need to answer the questions of which service levels they want

to provide and how they can be implemented. The first question needs to be addressed

by the HPC provider in conjunction with its users. Kübert [20, 19] and Kübert and

Wesner [21, 22] propose the usage of SLAs which are not dynamically negotiated

on a per-job basis but which are prepared well in advance before job submission.

These “long-term SLAs” are a feasible approach to provide service levels in a man-

ner that is not disruptive to contracting and user management that is performed at

HPC providers today. Apart from relying on long-term contracts, a key point of this

approach is that HPC providers will most likely procure a small number of service

levels; this runs contrary to work using per-job negotiation as well, which normally re-

sults in a potentially huge number of different service levels. This approach, however,

resides rather on the conceptual level and does not prescribe any details of actual

implementation.

Implementing service level support in an HPC environment requires solving two

problems: implementation on the middleware layer and above and implementation on

the resource level. While the former can and should be addressed in a generic fash-

ion, the latter can only be addressed depending on how the first question mentioned

above, the how and which of service levels, has been answered. Different service levels

require different implementations on the resource layers and can hardly be general-

ized; Kübert and Wesner have, for example, investigated the influence of cancelling

best effort based jobs in order to ensure wait time guarantees [23].

This work proposes a solution for the open question previously mentioned, namely

how to realize a generic framework for the support of service levels in an HPC envi-

ronment. This is done by analysing a specific scenario that is motivated from a use

2012/11/21; 18:57 str. 2/22

184 Axel Tenschert, Roland Kübert

case occurring in HPC. For the specific scenario, the resource layer implementation

is presented as well. While the former part can be used without changes for other

scenarios, the latter part needs to be adapted to the case at hand.

Outline The remainder of this article is organized as follows. Section 2 gives account

of related work. Section 3 discusses requirements by both service providers and users

through an example scenario, motivated from the real world. Section 4 presents the

high-level architecture of the proposed solution while section 5 discusses implemen-

tation details. Section 6 evaluates the presented concept against the requirements

derived from the scenario. Section 7 concludes the work and gives an outlook on

future work.

2. Related work

Service level agreements have been used for various purposes in the grid and dis-

tributed computing area. Most of this work is not considering HPC in its true sense

using dedicated supercomputers. While the aspect of job scheduling itself is quite

often treated in isolation (see for example [43, 44, 17, 16, 29]), there is no investiga-

tion of overarching solutions encompassing SLA management and job submission and

scheduling at the same time. If SLA management is addressed, this is mostly done

on a high level and does not extend to the middleware or resource layer. During job

submission and scheduling SLA information is assumed to just “be there”.

Advance reservation is in general a concept that is suitable for providing certain

QoS guarantees and implementations exist that can be readily used, for example the

Maui Scheduler1. However, advance reservation is best applicable to scenarios which

require precise execution times, for example for co-allocation of resources [25] [24].

Co-allocation is, however, only one possible service level (see for example Wesner [42],

who proposes additional service levels). Furthermore, advance reservation does not

scale well, making its use difficult for current HPC resources, even more so for future

exascale systems [9]2.

Service level agreement management has been a popular research area in general.

It has been broadly covered by various European research projects. The ICT-funded

research projects NextGRID [26], Business Experiments in GRID (BEinGRID) [6],

Business objective driven reliable and intelligent grids for real business (BREIN) [8]

and Interactive Realtime Multimedia Applications on Service Oriented Infrastructures

(IRMOS) [2]. To exemplify the approaches taken we examine the approaches taken

by BEinGRID and BREIN.

Figure 1 shows a high-level view of the different phases during the lifetime of an

SLA that have been identified in BEinGRID. Different requirements were identified

1http://www.adaptivecomputing.com/resources/docs/maui/
2The Cray XE6 “Hermit” in use at the High Performance Computing Center in Stuttgart since

December 2011 and delivering a peak performance of “only” 1.045 petaFLOPs has already 3,552
compute nodes with 113,664 cores [14].

2012/11/21; 18:57 str. 3/22

SLA-based job submission and scheduling with the Globus Toolkit 4 185

from this: SLA template specification, Publication & Discovery, Negotiation, Provider

Resource Optimisation, Monitoring, Re-negotiation, Evaluation and Accounting. BE-

inGRID provides no ready-to-use SLA management framework addressing these re-

quirements but rather composable components addressing specific use cases for SLA

negotiation, monitoring and evaluation, violation notification and accounting.

1 - SLA

Template

Creation

2 - SLA

Template

Publication

2’ - SLA

Template

Discovery

3 - SLA

Negotiation

4 - SLA Optimisation

6 - SLA Evaluation

5 - SLA Monitoring

7 - SLA Re-

Negotiation

8 - SLA Accounting

SLA Contract

Definition Phase

SLA Negotiation Phase

SLA Enforcement Phase

Figure 1. SLA management as seen by the BEinGRID project.

From figure 1 it can be seen that contract definition and negotiation are very

important in BEinGRID’s approach. This is also obvious in a video presentation of

BEinGRID’s SLA architecture3. Dynamic negotiation of SLAs per individual com-

pute job, however, is an approach that is very unlikely to appeal to users in an HPC

environment. BREIN’s approach is similar in regard to dynamic negotiation, how-

ever the SLA management framework proposed by BREIN is much more complex (see

Figure 2).

The SLAs used in BEinGRID were based on the WS-Agreement specification

[36] defined by the Open Grid Forum [37]. BREIN used SLAs that were composed

mainly according to WS-Agreement but parts were taken from WSLA[15], mostly

related to monitoring. While WS-Agreement basically only defines “a language and

a protocol for advertising the capabilities of service providers and creating agreements

based on creational offers, and for monitoring agreement compliance at runtime”, an

abstract architecture is specified as well. Battré, Kao and Voss have presented an

implementation of WS-Agreement in the grid middleware Globus Toolkit 4 (GT4) [5].

This implementation allows for SLA negotiations per job and validates SLAs proposed

3http://www.youtube.com/watch?v=moKSso2gN8w

2012/11/21; 18:57 str. 4/22

186 Axel Tenschert, Roland Kübert

SLA Negotiator

SLA Manager

SLA Repository

Service Discovery

SLA Evaluator

(SLA Template)

Registry

SLA Evaluator

PEP
Service Instance

Membership

Management

SLA Monitor Accounting

SLA Repository

SLA Manager
SLA Template

Generator

SLA Negotiator

SLA Mapper

Optimiser

SLA Template

Repository

Customer Domain Third Party Domain

Third Party Domain

Service Provider Domain

Figure 2. SLA management as seen by the BREIN project.

by customers against constraints specified in a template. Furthermore, it is checked

that SLAs can fit into a schedule by the planning based resource manager OpenCCS4.

Similar approaches have been taken by research projects related to the German

grid initiative D-Grid that have investigated SLA management, for example by the

projects FinGrid [10] and SLA4D-Grid [30].

Regarding SLA management specifically for HPC environments, an architecture

has been proposed by Koller [18]. The architectural approach is complex and in total

proposes more than thirty different components. As with the approaches discussed

previously, the creation and negotiation of agreements is an important part in this

architecture as well. No implementation is discussed in this work.

Most of the projects and approaches mentioned above make use of the Globus

Toolkit grid middleware for implementation of their components [35]. Furthermore,

they use services already provided by the middleware, for example a directory service,

job submission service, notification mechanisms etc. Two other popular middlewares

are UNICORE [38] and gLite [32]. Globus Toolkit’s current version is 5.x; however,

as this version has done away with the Java-based web services supported previously,

many sites still run version 4.x in production use, for example the High Performance

Computing Center Stuttgart (HLRS)[13], which uses this version even for access to

its new Hermit supercomputer inaugurated in December 2011 [14], or the German

national grid initiative D-Grid [31] and several related research projects. Hence, this

work focuses on GT 4 in order to support a job scheduling in a state of the art HPC

environment.

If so many approaches to SLA management, partly even implementations, al-

ready exist, a question poses itself: why “yet another SLA management framework”?

4https://www.openccs.eu/core/

2012/11/21; 18:57 str. 5/22

SLA-based job submission and scheduling with the Globus Toolkit 4 187

There are a number of answers to this question. Firstly, looking at HPC providers to-

day, there is basically no support for service levels yet, even though service levels have

been widely used in other fields which are somewhat closely related to HPC. A reason

for this can be found in the overly complex SLA management frameworks (SLAMFs)

that have been proposed, for example in the projects mentioned above. The reason for

this complexity lies in the fact that these solutions are generic in nature. Therefore,

it is difficult to reduce an SLAMF to a core of specialized components. Overly high

complexity is, however, even found in specialized SLAMFs, for example in [18]. Im-

plementation, setup and (interdependent) configuration of such a number of different

components is a gargantuan task; the adaptation of the scheduler then still remains!

It is therefore understandable that the uptake of these solutions is hardly happening

at all.

The complexity even of targeted solutions can be explained through the complex

SLA lifecycle proposed by the TeleManagement Forum (TMF) [3]. Most SLAMFs are

based on this lifecycle, which divides an SLA’s life time into six phases: Development,

Creation, Provisioning, Execution, Accounting, Assessment and Termination. Even

though there are other, slightly simpler lifecycles, for example [28], the TMF’s lifecycle

seems to be a de-facto standard. SLAMFs generally cover the whole lifecycle and are,

therefore, highly complex. We assume that the development, creation, provisioning,

accounting and assessment tasks are better treated on their own, potentially off-line,

and thus we focus on the execution task. This allows for the development of a much

more targeted SLA management framework.

3. Scenario and requirements

As a motivating scenario we present a semantic matching use case. Semantic matching

is the process which identifies nodes in multiple graph structures which semantically

correspond to one another. The amount of data processed when performing semantic

matching varies with the concrete application but this is usually not an issue. How-

ever, the reasoning process itself is computationally expensive and time consuming.

For instance, in August 2011 within the scope of the large triple store challenge [40]

the loading and querying of about one trillion RDF triples [39] was processed. The

execution took nearly 338 hours for an average rate of 829.556 RDF triples per second

running on 80 cores. Hence, such processes will be distributed whenever it is possible,

as data set size is expected to grow. The semantic matching used in this scenario

is based on the forward-chaining based matching approach described by Weaver and

Hendler [41]. Mostly, the reasoning is not a time critical process and a user is satis-

fied to run the related computational jobs in best effort manner. However, at times

computations might be required in a certain time frame. During the course of work

there are various situations which require the preferential use of HPC resources: data

needed for presentations or publications, for example, or input that is urgently re-

quired for project deliverables which are often updated very close to the documents’

deadlines. Reasoning on semantic data is usually performed in different steps which

2012/11/21; 18:57 str. 6/22

188 Axel Tenschert, Roland Kübert

build on each other. Each process requires data from the previous process as in-

put. A usual process sequence may consist of several steps such as lexical matching,

taxonomy matching and non-taxonomy matching.

We assume an expert is able to perform a complete matching cycle step by step

in one working day if the individual matching steps are executed in a timely manner.

This is valid for data sets up to a certain size only, of course, but without loss of

generality we focus on data sets which require not more than a full day for complete

processing. Firstly, the lexical matching step is initialized by the expert. The expert

needs to wait for the results of this step and afterwards the next matching step can be

started if the expert decides to go on with the matching. The domain expert’s task

in between the steps is the analysis of the output of each step and the decision if the

following step is even to be performed. Through the distribution of the matching tasks

on available computing resources complete matching and the afterwards performed

reasoning can easily be performed within a fixed time-frame if the amount of waiting

time for each job execution is known as well. The user therefore requires to be able to

perform his computations not only in a best effort manner but also with guaranteed

waiting times.

Table 1 shows the requirements from the user’s side for this scenario. In order for

an HPC provider to address these requirements, we use the long-term SLA approach

proposed by Kübert [20, 19] and Kübert and Wesner [21, 22]. In a nutshell, this

approach means that an HPC provider procures a small number of service levels only,

maybe even just one service level in addition to the usual best effort service level. Users

contract each service level they want to use with the provider. This is done well in

advance of actual job submission, just like it is done at HPC providers today. However,

where there normally is only one so-called “user agreement” in place between HPC

provider and customer, the different service levels, which are described in service level

agreements (SLAs) can be thought of as multiple user agreements where each user

agreement is equivalent to a service level. As with the user agreements currently in

place, this approach assumes that these SLAs are contracted on a long-term basis, for

example for various years, thus “long-term SLAs”. SLA negotiation, which is usually

one of the most complex topics of SLA management, is thus treated as a precursor to

the actual scenario, greatly simplifying the resulting management framework.

Service levels that are relevant for HPC users have to be elicited by a provider

from their users as different user groups will require different service levels. For our

case of a semantic reasoning use case and the user requirements listed in Table 1,

we assume that the HPC provider offers, besides best effort based access, a service

level that gives a maximum waiting time guarantee for jobs submitted in relation to

this service level. For the sake of simplicity, we will call the best effort service level

from here on “bronze level” and the service level with guaranteed waiting time “silver

level”.

Table 2 shows the requirements from the provider for the scenario stated above.

These are mainly focused on the provider being able to provision different service

levels.

2012/11/21; 18:57 str. 7/22

SLA-based job submission and scheduling with the Globus Toolkit 4 189

Table 1

Scenario user requirements.

Req. No. Definition Scenario Example

RC1 Management of large data

sets

Semantic matching of several large data sets by

consideration of extreme large data volumes such

as the use of more than one trillion RDF triples

RC2 Execution of a reasoning

task

Execution of the forward-chaining based reason-

ing approach dealing with high amounts of data

RC3 Latency handling Dealing with interdependent inference proce-

dures by keeping latencies low

RC4 Time efficiency of reasoning A restricted time frame

RC5 Allocation of compute

resources

A customer requiring HPC resources

RC6 Configuration of compute

resources

Solving a specific reasoning strategy

RC7 Contracting of different

SLAs

User is able to contract for multiple service levels

RC8 Obtaining accounting

information regarding SLAs

User is able to receive detailed information for

the usage of the contracted service levels

Table 2

Scenario provider requirements.

Req. No. Definition Scenario Example

RP1 Procurement of different

service levels

The provider is able to offer for example a best

effort based service and one with extended guar-

antees

RP2 Validation of jobs

submitted against their

alleged service level

Users might submit jobs to a service level they

are not allowed to use

RP3 Job scheduling in

accordance with prepared

service levels

Job scheduling is performed as envisioned by the

provider in accordance with the service levels

RP4 Accounting and billing

respecting service levels

Jobs need to be accounted against their service

level, taking potential bonuses and rewards into

account

2012/11/21; 18:57 str. 8/22

190 Axel Tenschert, Roland Kübert

For this scenario, we assume that the service levels are, in detail, as follows:

• Best effort (bronze)

– No limit on job size.

– Maximum execution time of 24 hours.

– No limit on jobs in the queue at the same time.

– No limit on how many jobs are executed simultaneously.

– No guarantees on waiting time.

• Guaranteed waiting time (silver)

– Maximum job size 200 cores5.

– Maximum execution time of 4 hours.

– At most 2 jobs in the queue at the same time per user.

– At most 1 job per use is executed simultaneously.

– Waiting time is guaranteed to be less than 1 hour.

As presented the bronze level differs from the silver level by the provided re-

sources such the maximum job size. In case the provided resources do not fit the

scenario requirements, the SLA level needs to be changed. Further details, for exam-

ple regarding the price of computational units, which is usually given in core hours,

are of no interest for the purposes of this work. One can, of course, assume that the

price per computational unit is significantly higher for the silver service level.

4. Architecture

This sections proposes a generic architecture that enables the use of SLAs for grids,

clusters and HPC resources. The main influences for the architecture are the re-

quirements presented in section 3. Additionally, the architecture is already aligned

with how resource access is usually realized today. Thus, the architecture is geared

towards the specifics of the Globus Toolkit 4 (GT4), which is a grid middleware that

is employed very often for providing high-level access to grids, clusters and HPC re-

sources. Even though GT4 has been succeeded by the follow-up version 5, it is still

in widespread production use.

GT4 is a modular middleware and the part that enables users, among other

things, to submit, monitor and cancel remote jobs is called Grid Resource and Allo-

cation Management (GRAM). It is not a job scheduler in itself but provides a single

point of access for communication with different job schedulers and resource managers

[1]. Specifically, the focus of the presented solution lies on the web service realization

WS-GRAM, which is shown in Figure 3. There are two web services that make up the

heart of WS-GRAM, ManagedJobFactory and ManagedJob. The ManagedJobFactory

service exposes an interface for the creation of jobs for a local scheduler. Submitted

jobs are exposed as resources of the ManagedJob service. This service can be queried

in order to monitor the status of a job, terminate a job etc.

5This means 10% of the used cluster.

2012/11/21; 18:57 str. 9/22

SLA-based job submission and scheduling with the Globus Toolkit 4 191

���������	���
���
��������������

���������	���
�

��	������

�����������

������	������
��

��
������

����	������	��

������
������

������

�	��
�

��	�����

!�
 �

�
��
�

!� �����
�

���
��

����	��� ���
���	

��	�����

�����

�������

Figure 3. WS-GRAM components [33].

A simple job submission scenario using WS-GRAM follows the sequence shown in

Figure 4: the client invokes the ManagedJobFactory ’s createManagedJob operation,

which results in a ManagedJob resource being created and it’s endpoint reference

(EPR) being returned to the client. GRAM schedules the job with the local scheduler

and notifies the client that the job is pending. On subsequent events — scheduling of

the job, job start, job end etc. — GRAM notifies the client. Explicit termination of

resources is not necessary.

The architectural requirements for realizing SLA-based job submission are quite

straightforward if we adhere to a service-oriented architecture (SOA) approach. Sec-

tion 3 stated a number of requirements which we can translate quite easily to services

and operations.

Requirements RC1, RC4 and RC5 are generic enough that we can presume that

they are fulfilled by GT4 already. Requirement RC2 and RC3 require support for

timing parameters and requirement RC6 the provisioning of a specific compute en-

vironment tailored to the user. RC6 can be seen as a parameter for job submission

that exists independently of the service levels silver and bronze and which allows the

user to specify certain requirements on software (e.g. version of semantic reasoning

library) or hardware (specific CPU and RAM requirements). RC2 and RC3 are re-

quirements on timing and thus result in different QoS classes (silver and bronze in the

example scenario). RC7 and RP1 mean that the system needs to be able to differen-

tiate between service levels in a generic way. RC8 has a similar meaning but requires

an accounting and billing system that is capable of differentiating between service

levels as well; RP4 is addressed through this on the provider side. While from the

remaining requirements RP2 can be addressed on the middleware layer, RP3 needs

to be realized on the resource layer and is basically the most complex part to realize.

It is, however, not a part of the generic SLA management framework but part of

the underlying implementation which is always specific to the actual service levels

provided.

2012/11/21; 18:57 str. 10/22

192 Axel Tenschert, Roland Kübert

������ ��	
 �������� ���

����������

�����������

�������������������������

������������ �

��������!�����������

��������!�����"�����

�����"����

������������������

Figure 4. WS-GRAM protocol sequence [33].

A high-level architecture that supports the usage of SLAs is shown in Figure 5.

The main component is the SLA Manager, which is responsible for the management

of SLA-related data; it uses a Repository where the complete SLAs and relevant

information are stored. Furthermore, the SLA Manager acts as a policy decision

point (PDP): when a job is submitted by a client to the M anagedJobFactory, the

factory relays SLA-related data to the SLA Manager. The SLA Manager analyzes

the data and takes a decision that is communicated back to the factory. Multiple

PDPs can be activated at the same and their decision can result in various actions

to be enforced (specifically for GT4, the algorithm “AllowOverride”, for example,

results in one allow received from multiple PDPs to override one or more denies,

while “DenyOverride” works the other way round).

If the factory as a policy enforcement point (PEP) finally accepts a job, it is

submitted to the scheduling system. Depending on the actual realization of the

scheduling, the Scheduler might communicate with the SLA Manager in order to

obtain relevant data from an SLA associated with a specific job. The SLA Manager

is the central point regarding communication of SLA related information to the user.

Accounting information, for example, can thus be queried through the SLA manager

which can obtain information from other internal components on the provider side.

2012/11/21; 18:57 str. 11/22

SLA-based job submission and scheduling with the Globus Toolkit 4 193

����

����	
�
���

����
����������

����������������

����
���������

��
��
�

�� !���"�

�
�
�
��

�� !��

"�

�����#�����

�����

Figure 5. High-level SLA management components.

5. Implementation

The previous section described the high-level architecture used to submit and schedule

jobs in relation to SLAs for a grid middleware. This section elaborates on implemen-

tation details and describes a proof of concept realization of the architecture.

5.1. Submitting and receiving jobs in relation to SLAs

For the submission of a job related to an SLA, a client needs to be able to have an

overview of SLAs which are in place for an HPC provider. The client can either im-

plement its own SLA management stack or can use services provided by the provider.

For the sake of simplicity, we assume that SLA-related information is not stored on

the client side but is queried on demand from the provider’s SLA Manager compo-

nent. The client is provided with a GUI tool that can be used to submit jobs in

reference to contracted SLAs as shown in Figure 6. For each of the providers listed

in the first text box, SLAs that can be used will be listed in the text box below. The

client can then select a prepared job description file that shall be submitted for the

given SLA and can finally submit the job.

In the screenshot shown the client is connected to three different HPC providers.

It is sufficient for the client to, for example, configure the application with the URLs of

the SLA Manager component of each provider that shall be used. SLA information can

then be queried dynamically from each provider’s SLA Manager. Figure 6 shows three

SLAs in place, namely “Gold”, “Silver” and “Bronze”, which the client application

has queried from the provider’s SLA Manager service. The user can select any one

of these when submitting a job.

Practically, the addition of SLA-related information to the job submission is

performed by adding a reference — in our case, the unique id of the SLA — to the

MessageContext when communicating with the ManagedJobFactoryService, as shown

2012/11/21; 18:57 str. 12/22

194 Axel Tenschert, Roland Kübert

Figure 6. SLA selection and job submission using a GUI client.

in Listing 1. This is certainly not the only way to communicate the SLA id between

customer and service provider, but it is a simple and straightforward solution. Both

parties of course need to use the same way of conferring and expecting the SLA id in

a job submission message.

1 private EndpointReferenceType getFactoryEpr(String contact ,

2 String factoryType) throws Exception {

3 URL factoryUrl = ManagedJobFactoryClientHelper.getServiceURL(contact)

4 .getURL ();

5
6 EndpointReferenceType epr = ManagedJobFactoryClientHelper.

getFactoryEndpoint(factoryUrl ,

7 factoryType);

8
9 // SLAID Start

10 ReferenceParametersType parameters = epr.getParameters ();

11 MessageElement slaId = new MessageElement ("http :// www.hlrs.de/namespaces/

services/SLA", "slaId");

12 slaId.setValue ("6 C4E20EA7F000101B05FCB518079B0 ");

13 parameters.add(slaId);

14 // SLAID End

15
16 return epr;

17 }

Listing 1: Adding an SLA id to the factory’s message context.

2012/11/21; 18:57 str. 13/22

SLA-based job submission and scheduling with the Globus Toolkit 4 195

ReferenceParameters are an optional element of an Endpoint Reference and can

easily be extracted from the SOAP header on the recipient side [7].

The specification of the job description to be submitted to the provider is taken

from a file which the user can select and whose contents can be viewed/edited in the

submission client as well. Globus uses Resource Specification Language (RSL), a self-

developed XML schema, to allow users to specify complex jobs [11]. An example that

runs the executable /bin/sleep with the argument 60 and specifies custom files for

standard output and standard error is given in Listing 2.

1 <job >

2 <executable >/bin/sleep </executable >

3 <argument >60</ argument >

4 <stdout >${GLOBUS_USER_HOME }/stdout </stdout >

5 <stderr >${GLOBUS_USER_HOME }/stderr </stderr >

6 </job >

Listing 2: A simple sleep job in RSL.

If the user has selected a service level and a job description file, the corresponding

job will be submitted to the provider once the user activates the Submit button shown

in the bottom right corner in Figure 6.

5.2. Receiving SLA information on the provider side

The SLA id contained in the SOAP header of the job submission message is extracted

on the provider side; in the implementation presented here, the following checks are

implemented:

• The certificate identifying the user is checked against one stored with the SLA in

order to confirm if the user is allowed to use this certificate; without this check,

any user who would somehow obtain an SLA id could use it to compute on the

cost of other customers.

• The SLA is checked for timely validity, that is if the run-time of the SLA has

expired or not.

• A customer is not allowed to have more than one job queued in the prioritized

service level; there is no limit on best effort jobs.

• All prioritized SLAs only allow a maximum wall time of 4 hours; if the maxWall-

Time property in the job description exceeds this time, the job is not allowed

to run.

Both the selection of the parameters that are checked and the values of these

parameters are arbitrary and only serve to illustrate the possibility of how easily

checks of a job submission’s property can be validated against an SLA.

5.3. Securing the ManagedJobFactory service

Calls to the ManagedJobFactory service need to pass the SLA PDP, additional to any

other PDPs that are in place as well. GT4 uses so-called “security descriptors” for

configuring different security properties, for example credentials, authentication and

2012/11/21; 18:57 str. 14/22

196 Axel Tenschert, Roland Kübert

authorization mechanisms etc. [34] Therefore, the SLA PDP has to be added to the

security descriptor for the M anagedJobFactory 6 as shown in Listing 3.

PDPs are configured in an authorization chain and are evaluated in turn to finally

arrive at a permit or deny decision. If the PDPs are combined with deny override,

as is shown in Listing 3, all PDP have to arrive at a permit decision in order for the

complete chain to authorize a request. The SLA PDP is, as first PDP, evaluating if

the request specified a correct SLA id which is valid for the user presenting it, checking

that the referenced SLA allows for a submission of a job at the current time (see the

section 5.2). If the SLA PDP denies the request, no further evaluation is necessary.

However, if the SLA PDP permits the request, the Gridmap PDP, a default Globus

PDP, is invoked, to see if the user calling the service can be mapped to a local user.

Only if this PDP arrives at a permit, the job can finally be queued.

1 <serviceSecurityConfig >

2 <methodAuthentication >

3 <method name=" createManagedJob">

4 <auth -method >

5 <GSISecureConversation/>

6 <GSISecureMessage/>

7 <GSISecureTransport/>

8 </auth -method >

9 </method >

10 </methodAuthentication >

11 <authzChain combiningAlg =" DenyOverride">

12 <pdps >

13 <interceptor

14 name=" slapdp:de.hlrs.gt4.pdp.sla.Gt4SlaPdp" />

15 <interceptor

16 name=" gridmap"/>

17 </pdps >

18 </authzChain >

19 <reject -limited -proxy value="true"/>

20 </serviceSecurityConfig >

Listing 3: Security descriptor for the ManagedJobFactory.

The PDP extends the interface org.globus.wsrf.security.authorization.PDP and

has one important operation, isPermitted. Listing 4 shows how the SLA PDP is

implemented in a high-level pseudo code. The caller is passed to this operation by

GT4, as well as the message context and the name of the operation called. The SLA

id, which has been embedded by the user in the message context, is extracted and

the SLA id and caller id are passed on to the SLA Manager in order for it to assess if

the SLA id is valid and if a job can be submitted at the current time for the specified

contract. The PDP then relays the SLA Manager’s decision back to the caller.

1 public boolean isPermitted(Subject peerSubject , MessageContext context ,

2 QName operation) throws AuthorizationException {

3
4 boolean isPermitted = true;

5

6The default location is
$GLOBUS_LOCATION/etc/globus_wsrf_gram/managed-job-factory-security-config.xml

2012/11/21; 18:57 str. 15/22

SLA-based job submission and scheduling with the Globus Toolkit 4 197

6 String caller = SecurityManager.getManager(

7 (SOAPMessageContext) context).getCaller ();

8
9 String operationName = operation.getLocalPart ());

10
11 // Only execute authorization check for the createManagedJob method

12 if (operationName.equals (" createManagedJob ")) {

13 String slaId = getSlaIdFromMessageContext ();

14 isPermitted = jobSubmissionPermitted(slaId , caller);

15 }

16
17 return isPermitted;

18 }

Listing 4: Realization of the SLA PDP.

5.4. Scheduling jobs in reference to SLAs

The connection between the Globus GRAM web services (ManagedJobFactory), to

which the users submits its job, and the underlying scheduler is realized with a “Sched-

uler Interface” realized in the Perl programming language [12].

Globus provides some interfaces for the schedulers Condor, LSF and PBS and

a basic fork scheduler which is mainly for testing purposes; only the fork and PBS

scheduler interfaces are installed by default 7.

Every scheduler interface has to be provided as a Perl module that subclasses

the Globus::GRAM::JobManager module which provides an implementation of the

base behavior of a job manager. The scheduler interface provides the connection

to a specific scheduler. The name of the interface needs to match the scheduler

type string (in lower case), thus for the PBS scheduler, this results in the name

Globus::GRAM::JobManager::pbs. The parent module, Globus::GRAM::JobManager,

provides several methods of which only the submit and cancel methods need to be

implemented. The PBS script, which has been adapted to this purpose, provides the

following four methods:

cancel Cancels a job with a given job id by calling PBS’ qdel command,

myceil Performs rounding when computing the number of nodes to use in a cluster,

poll Polls the status of a job with a given id by calling PBS’ qstat command,

submit Constructs a job description file out of the parameters given to the script

and submits it by calling PBS’ qsub command.

The scheduler script receives a job description that is stored in the ManagedJob.

In the implementation at hand, the SLA id is taken as the name of the queue to

which the job is to be submitted; to which queue a job is submitted could of course

be computed in other ways. The job description is finally submitted via the qsub

command to PBS. In this implementation, the service levels are Silver and Bronze

and are mapped to corresponding queues where the Silver queue has a higher priority

7The modules can be found in $GLOBUS LOCATION/lib/perl/Globus/GRAM/JobManager/

2012/11/21; 18:57 str. 16/22

198 Axel Tenschert, Roland Kübert

than the Bronze queue. If necessary, jobs for the Bronze queue are cancelled and

requeued.

For example, a request reaching the scheduler interface where the SLA reference

is specified as Silver would be submitted to the queue named Silver with qsub -q

Silver. . . . The mapping of service levels to queues can be implemented at different

levels; for the sake of simplicity it has been implemented as a 1:1 mapping of service

level to queue in the ManagedJobFactory. The scheduler interface could as well only

be passed the SLA id and could itself query the SLA Manager for the corresponding

service level; as the job submission parameters are already checked against the SLA

in the higher level middleware layer, it suggests itself to perform the mapping directly

at this stage as well.

6. Evaluation

The scenario introduced in section 3 provided the requirements which are evaluated

in this section. For both the user and the provider requirements, we analyse how

far the individual requirements have been addressed by the architecture presented in

section 4 and the implementation addressed in section 5. Table 3 contains the user

requirements, Table 4 the provider requirements.

The described scenario was simple but sufficient for demonstration purposes.

Thus, the presented SLA based job scheduling is not restricted to the selected scenario

but it is usable for scenarios needing HPC resources, e.g. virtual turbine simulation.

In general, the scenario can be extended easily by employing a more complex schedul-

ing by the provider, which is reflected in the corresponding SLAs. The presented

job submission by use of SLAs offers the possibility to allocate needed computing

resources with an individual configuration to deal with waiting time guarantees.

7. Conclusions and future work

This work has shown how high-level SLA management can be integrated into a com-

mon grid middleware, the Globus Toolkit, and, subsequently, into the scheduler. This

allows the realization of an integrated solution for the offering, usage and accounting

of service level agreements in a grid environment. The scope of this work only allows

for a prototypical implementation of the, in total, quite complex solution. Therefore,

different tasks remain to be tackled in future work. Firstly, some components might

be desirable in addition to the basic solution presented here, for example regarding

monitoring of SLA usage, accounting, etc. Secondly, this is in many aspects a proof

of concept implementation, therefore it is not directly ready to be deployed in a pro-

duction environment. Preparing, configuring and packaging the realized components

so that they can be used straight away, is therefore a desirable task.

In terms of the scheduling of service levels, we have only presented a simple,

queue-based approach. This decision was, once more, due to the proof of concept

nature of this work. One can, however, only go so far with a queue-based approach;

2012/11/21; 18:57 str. 17/22

SLA-based job submission and scheduling with the Globus Toolkit 4 199

Table 3

Addressed user requirements.

Req. No. Solution for the Scenario

RC1 & RC2 The distribution of the matching and the reasoning enables the execu-

tion of matching complex semantic structures and afterwards performing of

a forward-chaining based reasoning. However, this scenario expects selected

data sets as compatible with similar structure, language or content.

RC3 Latency management for the user is possible through usage of the silver

service level, which gives guarantees on waiting time.

RC4 The described scheduling approach is based on long-term SLAs. The SLAs

define the amount, type and configuration of usable computing resources

as well as the period in which such resources are available for the expert.

Through the use of the SLAs the expert is enabled to allocate computing

resources as needed for executing urgent tasks in the given time frame.

RC5 and RC6 Due to the presented scheduling approach and the use of tailor made SLAs

the needed computing resources as well as the configuration of such re-

sources is handled. The reasoning task is executed by use of the computing

resources and configurations defined in the long-term SLA.

RC7 The distinction between different service levels – bronze and silver in this

scenario – allow the user to select the most appropriate one for a specific

computation.

RC8 The user may receive accounting information regarding the amount of used

resources in total and per SLA via the provider’s SLA manager service.

The billing process will make use of this information as well.

many complex operations, for example advance reservation, are not or not easily pos-

sible with queue-based approaches but require a schedule-based approach. Realizing

more complex scheduling components is a complex yet interesting work in its own

right. However, it becomes possible to combine the presented work with results ac-

quired through the European funded plugIT project [27]. Within the plugIT project

graphical models are used to present an available infrastructure of an HPC center,

e.g. HLRS [13], in order to perform a semantic matching on the graphical models to

create an SLA recommendation. The automatically produced SLA recommendations

are sent to the customer as SLA offers to be negotiated.

In general, the work described in this paper is an approach for performing an SLA

based job submission usable for receiving required computing resources. Thus the use

case scenario becomes possible due to the allocation of the needed resources through

the SLA based job submission. The SLA negotiation with the aim to allocate needed

resources is related to the above mentioned SLA4D-Grid project [30] developing an

infrastructure for SLA management and negotiation usable for grid architectures.

Hence, SLA4D-Grid was considered as related work and the results produced in this

2012/11/21; 18:57 str. 18/22

200 Axel Tenschert, Roland Kübert

Table 4

Addressed provider requirements.

Req. No. Solution for the Scenario

RP1 The provider has the possibility to offer different service levels as required by

the users – best effort (bronze) and guaranteed waiting time (silver) in this

scenario.

RP2 & RP3 On job submission, users are authenticated and subsequently authorized.

This prevents unauthorized use of SLAs that have not been contracted by

a user. For allowed use, the SLA parameters can be partially checked on

submission (silver job length less than 4 hours, at most 2 silver jobs allowed

to be queued simultaneously, etc.) or during scheduling (only 1 silver job

execute concurrently per user).

RP4 HPC providers currently account for resource usage by analysing resource

manager logs, either with a custom solution or by using existing tools like

pbsacct [4]. Basic accounting for service level usage can be done by stor-

ing the service levels for submitted jobs. Furthermore, by analysing the job

details it can be easily seen if QoS guarantees have been met, for exam-

ple regarding guaranteed waiting time, which enables the implementation of

penalties/discounts and rewards.

work are of interest for the project as well. Generally, the presented work fits well to

customers needs requiring computing resources and it is applicable for HPC centers.

References

[1] GRAM — Globus. http://dev.globus.org/wiki/GRAM.

[2] IRMOS project home page. http://irmos-project.eu/.

[3] TMF — TeleManagement Forum Homepage. http://www.tmforum.org/.

[4] Aveleda A.: pbsacct project home page, 2006.

[5] Battré D., Kao O., Voss K.: Implementing WS-Agreement in a Globus Toolkit

4.0 Environment. pp. 409–418. 2008.

[6] BEinGRID Consortium: BEinGRID project home page, 2009. http://www.

it-tude.com/projects/beingrid.

[7] Box D., Christensen E., Curbera F., Ferguson D., Frey J., Hadley M., Kaler C.,

Langworthy D., Leymann F., Lovering B., Lucco S., Millet S., Mukhi N., Not-

tingham M., Orchard D., Shewchuk J., Sindambiwe E., Storey T., Weerawarana

S., Winkler S.: Web Services Addressing (WS-Addressing). Technical Report,

W3C, August 2004.

[8] BREIN Consortium: Brein project home page, 2008. http://www.eu-brein.

com/.

2012/11/21; 18:57 str. 19/22

SLA-based job submission and scheduling with the Globus Toolkit 4 201

[9] Castillo C., Rouskas G. N., Harfoush K.: On the design of online scheduling

algorithms for advance reservations and qos in grids. In IPDPS, pp. 1–10. IEEE,

2007.

[10] FinGrid Consortium: FinGrid project home page, 2010.

http://www.fingrid.de/.

[11] Globus Alliance: GT 4.0 WS GRAM: Job Description Schema Doc, 2004.

[12] Globus Alliance: WS-GRAM Scheduler Interface Tutorial (Perl Module), 2005.

[13] High Performance Computing Center Stuttgart: HLRS — High Performance

Computing Center Stuttgart, University of Stuttgart, 2012.

http://www.hlrs.de/.

[14] Höchstleistungsrechenzentrum Stuttgart: Cray XE6 (Hermit), 2012.

http://www.hlrs.de/systems/platforms/cray-xe6-hermit/.

[15] Keller A., Ludwig H.: The WSLA Framework: Specifying and Monitoring Service

Level Agreements for Web Services. J. Netw. Syst. Manage., 11(1):57–81, 2003.

[16] Klusáček D.: Dealing with Uncertainties in Grids through the Event-based

Scheduling Approach. In 4th Doctoral Workshop on Mathematical and Engi-

neering Methods in Computer Science (MEMICS 2008), pp. 91–98, 2008.

[17] Klusáček D., Rudová H., Baraglia R., Pasquali M., Capannini G.: Comparison of

Multi-Criteria Scheduling Techniques. In Integrated Research in Grid Computing.

Springer, 2008.

[18] Koller B.: Enhanced SLA mangement in the high performance computing domain.

PhD in Engineering Sciences, Dissertation, Universität Stuttgart,, 2011.

[19] Kübert R.: Providing Quality of Service through Service Level Agreements in

a High-Performance Computing Environment. In P. Iványi, B. Topping, eds.,

PARENG 2011, 2-nd Int. Conf. on Parallel, Distributed, Grid and Cloud Com-

puting for Engineering, Ajaccio, France, April 2011. Civil-Comp Press. Paper 52.

[20] Kübert R.: Service Level Agreements for Job Control in Grid and HPC Comput-

ing. In Preve N., eds., Computational and Data Grids: Principles, Applications

and Design, pp. ***–***. Information Science Pub, 2011.

[21] Kübert R., Wesner S.: Service Level Agreements For Job Control in High-

Performance Computing. In IMCSIT, pp. 655–661, 2010.

[22] Kübert R., Wesner S.: Using service level agreements in a high performance

computing environment. Scalable Computing Practice and Experience, 12(2):164–

177, 2011.

[23] Kübert R., Wesner S.: High performance computing as a service with service

level agreements. In Proc. of the 9th IEEE International Conference on Service

Computing (SCC), 2012. to appear.

[24] Min R.: Scheduling advance reservations with priorities in grid computing sys-

tems. 2001.

[25] Netto M. A. S., Bubendorfer K., Buyya R.: Sla-based advance reservations with

flexible and adaptive time qos parameters. In Proc. of the 5th International

Conference on ServiceOriented Computing (ICSOS), vol. 4749 of Lecture Notes

2012/11/21; 18:57 str. 20/22

202 Axel Tenschert, Roland Kübert

in Computer Science, pp. 119–131. Springer, 2007.

[26] NextGRID Consortium: Nextgrid project home page, 2008.

http://nextgrid.org/.

[27] plugIT Consortium: plugIT project, 2011. http://plug-it.org.

[28] Redbooks I.: Service Lifecycle Governance With IBM Websphere Service Registry

and Repository. Vervante, 2009.

[29] Sakellariou R., Yarmolenko V.: Job Scheduling on the Grid: Towards SLA-Based

Scheduling. IOS Press, 2008.

[30] SLA4D-Grid Consortium: SLA4D-Grid project home page, 2012. http://www.

sla4d-grid.de/.

[31] The D-GRID GmbH: D-GRID homepage, 2012. http://www.d-grid-gmbh.de/

index.php?id=169.

[32] The EGEE Project: EGEE homepage, 2009. http://technical.eu-egee.org/

index.php?id=149.

[33] The Globus Alliance: GT 4.0 WS GRAM Approach. http://www.globus.org/

toolkit/docs/4.0/execution/wsgram/WS_GRAM_Approach.html.

[34] The Globus Alliance: Security descriptors. http://www.globus.org/toolkit/

docs/4.0/security/authzframe/security_descriptor.html.

[35] The Globus Alliance: Globus Toolkit homepage, 2012. http://www.globus.

org/toolkit/.

[36] The GRAAP WG of the OGF: Web Services Agreement Specification, 2007.

http://www.ogf.org/documents/GFD.107.pdf.

[37] The OGF: The Open Grid Forum homepage, 2012. http://www.ogf.org/.

[38] The UNICORE Forum: UNICORE homepage, 2012. http://www.unicore.eu/.

[39] The World Wide Web Consortium: The W3C RDF page, 2004. http://www.

w3.org/TR/rdf-concepts/.

[40] The World Wide Web Consortium: The W3C Large Triple Store page, 2011.

http://www.w3.org/wiki/LargeTripleStores.

[41] Weaver J., Hendler J. A.: Parallel materialization of the finite rdfs closure for

hundreds of millions of triples. In Proc. of the 8th International Semantic Web

Conference, pp. 682–697, 2009.

[42] Wesner S.: Integrated Management Framework for Dynamic Virtual Organisa-

tions. Dissertation, Universität Stuttgart, Stuttgart, Germany, 2008.

[43] Yarmolenko V., Sakellariou R.: An Evaluation of Heuristics for SLA Based Pa-

rallel Job Scheduling. In Parallel and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International, pp. 8 p., April 2006.

[44] Yarmolenko V., Sakellariou R.: An evaluation of heuristics for sla based parallel

job scheduling. In Parallel and Distributed Processing Symposium, 2006. IPDPS

2006. 20th International, pp. 8 pp., April 2006.

2012/11/21; 18:57 str. 21/22

SLA-based job submission and scheduling with the Globus Toolkit 4 203

Affiliations

Axel Tenschert
Höchstleistungsrechenzentrum Stuttgart, Nobelstraße 19, 70569 Stuttgart, Germany,
tenschert@hlrs.de

Roland Kübert
Höchstleistungsrechenzentrum Stuttgart, Nobelstraße 19, 70569 Stuttgart, Germany,
kuebert@hlrs.de

Received: 13.04.2012

Revised: 9.07.2012

Accepted: 3.09.2012

2012/11/21; 18:57 str. 22/22

204 Axel Tenschert, Roland Kübert

