
Mikhail Posypkin
Alexander Semenov
Oleg Zaikin

USING BOINC DESKTOP GRID TO SOLVE
LARGE SCALE SAT PROBLEMS

Abstract Many practically important combinatorial problems can be efficiently reduced

to a problem of Boolean satisfiability (SAT). Therefore, the implementation of

distributed algorithms for solving SAT problems is of great importance. In this

article we describe a technology for organizing desktop grid, which is meant

for solving SAT problems. This technology was implemented in the form of

a volunteer computing project SAT@home based on a popular BOINC platform.

Keywords desktop grid, Boolean satisfiability problem (SAT), volunteer computing,

BOINC

2012/03/12; 22:44 str. 1/10

Computer Science • 13 (1) 2012 http://dx.doi.org/10.7494/csci.2012.13.1.25

25



1. Introduction

Many practically important problems (model checking, problems of discrete systems

control, information security, etc) can be considered as Boolean satisfiability problems

(SAT) [1, 2]. SAT problems are hard and require lots of computational resources.

That is why using parallel and distributed computing to solve SAT problems is quite

popular nowadays. In this paper we further develop a technique for parallel solving

of SAT problems which was proposed in [3, 4, 5]. This approach relies on coarse-

grained work distribution and is therefore suitable for desktop grid (DG) systems.

Organizing the solving of SAT problems in a DG is challenging. There are currently

few studies in this area. Among recent works on SAT solving in DG the paper [6]

should be mentioned. In that paper a distributed SAT solver for peer-to-peer DG

was proposed. We propose another promising approach based on volunteer DG with

client-server architecture. This approach was implemented using BOINC [7] open

source platform.

2. Volunteer computing

Volunteer (or desktop grid) computing is a relatively new trend in distributed com-

puting. Unlike service grids or clouds the computational resources are provided by

so-called “volunteers”. Volunteers are PC users who agree to donate their computing

resources for solving scientific problems. The desktop grid technology ensures that

only free resources (when the PC is not used for other purposes) are used, so the

participation in a volunteer computing project does not interfere with the user’s main

activity. A comprehensive overview of the desktop grid software can be found in [8].

Below we outline the most popular DG systems.

XtremWeb[9] is an open source software used to build a lightweight Desktop Grid

by gathering the unused resources of desktop computers (CPU, storage, network). The

XtremWeb architecture is composed of Servers, Workers and Clients. A server (or

a group of Servers) host centralized services such as scheduler and result collector.

Workers are installed by resource owners on their PCs to donate their computing

resources. Clients are installed by resource users on their PCs and permit users to

install applications and use distributed resources, submit jobs and retrieve results.

Jobs submitted by Client are registered on the Server and scheduled for Workers.

Within the XtremWeb architecture any Worker can be a Client.

The OurGrid[10] middleware makes it possible to create the so called peer-to-

peer computational grids. In the peer-to-peer grids created by OurGrid, computing

and storage resources are provided by a whole community of grid participants. The

resources are shared in such a way that those participants who have contributed the

most get the most out of the grid resources whenever they need them. The software is

written in Java. OurGrid is an open-source software distributed under GPL license.

Condor[11] is a high-throughput distributed batch computing system developed

at the University of Wisconsin-Madison, USA. Condor can be used to manage a cluster

2012/03/12; 22:44 str. 2/10

26 Mikhail Posypkin, Alexander Semenov, Oleg Zaikin



of dedicated computing nodes. Condor can be configured to only use desktop machines

where the keyboard and mouse are idle. Should the system detect that a machine

is no longer available (i.e if a key press detected) Condor is able to transparently

produce a checkpoint and migrate a job to a different machine. Condor does not

require a shared file system across machines — if no shared file system is available,

it can transfer the job’s data files on behalf of the user, or be able to transparently

redirect all the job’s I/O requests back to the submit machine. As a result, Condor

can be used to seamlessly combine all of an organisation’s computational power into

one resource.

BOINC (Berkeley Open Infrastructure for Network Computing [7]) is an open

source platform for Desktop Grid computing. It is being developed at U.C. Berkeley

Spaces Sciences Laboratory by the group that developed and continues to operate

the SETI@home project. The BOINC software consists of two parts: server software

that is used to create volunteer computing projects and client software. Each project

operates its own server and provides its own web site. Volunteers install and run client

software on their computers. The client software is available for all major platforms,

including Windows, Linux,and Mac OS X. Volunteers can donate free computing

power from their PCs by connecting installed BOINC clients to different BOINC

projects. In the last decade BOINC projects helped to obtain several remarkable

scientific results e.g. new pulsars discovered by Einstein@home project.

From this big diversity of desktop grid software we selected BOINC as the most

reliable platform for volunteer computing that has proved the ability to collect and

maintain huge distributed projects. To the best of our knowledge BOINC has not been

used yet to solve SAT problems but many BOINC projects demonstrated remarkable

efficiency when applied to various combinatorial problems.

3. Parallelization of SAT problems encoding some

combinatorial problems

Boolean satisfiability problem (SAT [1, 2]) is to find a satisfying assignment for

a Boolean formula represented by a Conjunctive Normal Form (CNF). SAT is a NP-

hard problem, i.e. it cannot be solved by any known polynomial time algorithm.

However, this problem is extremely important for various practical applications: ver-

ification problems in microelectronics, discrete optimization, cryptography, analysis

of discrete automaton models, etc. Many of the problems from these areas can be

efficiently (in polynomial time) reduced to SAT. Over the past 10 years, an interest

in the construction of computational algorithms for solving SAT problems has signif-

icantly increased. Since 2002, specialized SAT solver competitions are regularly held

(see [2]).

The vast majority of efficient sequential SAT solvers are based on non-

chronological version of algorithm DPLL [12, 13]. Parallel SAT solvers started to

massively appear quite recently, despite the fact that the first theoretical works on the

2012/03/12; 22:44 str. 3/10

Using BOINC desktop grid to solve large scale SAT problems 27



parallelization of algorithm DPLL had been published already in the 1990s [14]. Par-

allel SAT solver competitions have been held regularly since 2008 [2]. Many modern

parallel SAT solvers ([15, 16, 17], etc.) involve intensive exchanges of Boolean con-

straints (so-called “conflict clauses”) accumulated in parallel on different computing

nodes. That is why the use of such solvers in grids is quite problematic. Nevertheless

there are some examples of distributed SAT solvers. The paper [6] describes a dis-

tributed SAT solver that uses peer-to-peer protocol to exchange constraints among

DG nodes. To the best of our knowledge there are no published results on the appli-

cation of client-server desktop grids to SAT problems.

In our paper we propose an approach that is designed for volunteer computing

and implies no data exchange among computing nodes. The approach is based on the

coarse-grained parallelization of a SAT problem. The original problem is decomposed

by assigning values to a set of selected variables. Since all variables are binary we

obtain 2n subproblems for n selected variables. Then the resulting subproblems are

processed independently on different nodes of a distributed system. The key issue

affecting the efficiency of the proposed approach is the proper selection of variables

for assignment. For this purpose a meticulous research of the original combinatorial

problem is performed. This research is carried out in the preprocessing stage and its

result is a list of tasks. In particular for the original CNF we construct some family

of subsets of the set of its Boolean variables. Each subset is associated with a value

of a special predictive function. The argument of this function is a random sample

of assignments of variables from the subset. The value of a predictive function gives

an estimation of the total time for solving the original SAT-problem in a distributed

environment. We perform the optimization of the predictive function to obtain the

subset with minimal prediction value. This subset we call the decomposition set and

we use it to construct the list of tasks. Note that when searching for the decomposition

set it makes sense to analyze in detail the features of the original problem and use

this information to improve the efficiency of predictive function optimization.

In [3, 4, 5] this approach was applied to the cryptanalysis of some keystream

generators. In most of these generators so-called linear feedback shift registers (LFSRs

[18]) are used as primitives. Including to decomposition set a variables which encode

whole initial state of some LFSR greatly simplifies tasks in a list. In [5] it was shown

that the use of this parallelization technique for the solving of the SAT problems

encoding cryptanalysis problems in some cases can lead to superlinear speedup.

The preprocessing stage may require the resources of a parallel computer (usually

the use of low performance cluster is sufficient for this purpose). However, the total

computational cost of this step is significantly less than that would later be recognized

for processing the constructed list of tasks. As a result of processing of this list we

obtain the solution of the original problem. The processing of the list is performed

by independent of each other’s hosts of DG (usually individual PCs). To control the

processing of the list (dispatch tasks, receive and analyze the results) a dedicated

server is used.

2012/03/12; 22:44 str. 4/10

28 Mikhail Posypkin, Alexander Semenov, Oleg Zaikin



In 2009 this approach was implemented in a distributed environment (compris-

ing of several supercomputers) and applied to the cryptanalysis of a widely known

keystream generator A5/1. Corresponding results can be found in [4].

It should be specifically noted that we consider cryptanalysis problems only as

hard tests. We believe that the successful testing of computing technology on cryp-

tographic tests means principal applicability of this technology for solving practically

important complex combinatorial problems (in the form of SAT problems) that are

not artificially designed to be hard, for example: discrete optimization problems (i.e.

QAP [19]), the search for some interesting combinatorial structures (i.e. mutually

orthogonal latin squares [20]), bioinformatics [21], etc.

The above results and considerations stimulated our research towards the con-

struction of the volunteer computing project for solving SAT problems.

4. Volunteer computing project SAT@home

We created a special BOINC project SAT@home [22] aimed at solving various SAT

problems. This project was launched in September 29, 2011 and now has nearly 3000

volunteer PCs connected. The project was created with the help of SZTAKI Desktop

Grid package [23] which is a featured BOINC distribution. Both server and client

parts of a distributed SAT solver were implemented using DC-API library [24]. The

server part is responsible for creating tasks in the project database as well as for

processing results collected from client PCs. Sending tasks to the client PCs and

collecting results is performed by standard BOINC daemons (see Fig. 1).

Server part 
of distributed 
SAT solver

BOINC 
daemons

Database of
the project

BOINC-client
Client part of solver

PC 1

BOINC-client
Client part of solver

PC 2

...

Figure 1. The scheme of the distributed solver in SAT@home

Client part is based on publicly available SAT solver minisat 1.14.1 [25] modified

to take into account the peculiarities of CNFs encoding the original problems. The

client part is executed on volunteers’ PCs

The scheme of solving SAT problems in SAT@home is shown in Figure 2. For

a particular SAT problem (CNF in DIMACS format [2]) we find “good” decomposition

2012/03/12; 22:44 str. 5/10

Using BOINC desktop grid to solve large scale SAT problems 29



parameters with the help of the predictive function technique described above. The

parameters include: a type of SAT solver, a variables selection method and a number

of subproblems. We use ISDCT RAS cluster Blackford [26] to find the decomposi-

tion parameters since these computations involve intensive interprocessor exchanges.

This step takes quite a little amount of time (about several hours). The obtained

parameters are used by the server part of the SAT@home project for decomposing

the original problem into a number of independent subproblems. These subproblems

are then submitted as new BOINC workunits (tasks) in the project database.

CNF 
(Conjuctive 

Normal Form) 
in DIMACS 

format

Search for 
parameters of 
decomposition

Desomposition 
and solving

Satisfying 
assignment 
or "UNSAT"

Figure 2. The scheme of solving SAT problems in SAT@home

On January 26, 2012 SAT@home had the following characteristics:

• 1002 participants;

• 2891 PCs, in total 11281 processor cores, 78% with Windows OS

• client parts of the application for windows x86, linux x86, linux x64;

• average real performance 1.5 TFLOPs, peak performance 4.3 TFLOPs.

Figure 3 shows the dynamics of the number of PCs connected to the project from

September 29 to January 26 2011. Each column displays the total number of PCs

connected to the project from its start to a specific date. It is easy to see that the

number of PCs has significantly increased from October 10. The reason is that on this

day the project was added to the statistical site Free-DC [27] (it contains information

about BOINC projects), and that an export of statistics was enabled, allowing other

statistical sites to add the project to their lists. Availability of information about the

project on major statistical sites is an important factor for attracting new users. In

Figure 4 a dynamics of the real performance of the project in GFLOPs is shown. The

increase in performance from November 24 to December 1 is due to the fact that the

site BOINCStats ran a competition on SAT@home so a lot of users from all over the

world desired to participate in it.

Currently processing of one task on client PC takes about 3 hours. The main

resource needed by application is CPU, at the same time only 20 Mb of RAM and

100 Mb of disk storage are used. The deadline for every task is 14 days. Every 2–

5 minutes checkpointing is performed. It prevents the loss of intermediate results

caused by extraordinary shutdown of a client’s PC.

Nowadays the most effective way of cryptanalysis of this generator is the so-called

“rainbow method” considered in [28]. The advantage of this method is its realtively

low computational cost that allows to perform cryptanalysis on an ordinary PC (it

2012/03/12; 22:44 str. 6/10

30 Mikhail Posypkin, Alexander Semenov, Oleg Zaikin



0

500

1000

1500

2000

2500

3000

3500

29.09.2011 29.10.2011 29.11.2011 29.12.2011

Figure 3. The dynamics of the number of PCs connected to SAT@home

Figure 4. The dynamics of real performance of SAT@home (GFLOPs)

requires downloading 1.6 Tb of rainbow tables from [28]). However, the main disad-

vantage of this method is that rainbow tables do not cover the whole key space. These

tables cover around 88 % of the key space. For testing the SAT@home project we

selected 10 problems for which rainbow method does not give any result. At the mo-

ment 4 of 10 problems have been successfully solved in SAT@home [29]. On average,

the solving of each test in the project took 10 days.

5. Conclusion

In this article we described general principles of coarse grained parallelization of SAT

problems aimed at large-scale distributed systems. This approach was implemented

2012/03/12; 22:44 str. 7/10

Using BOINC desktop grid to solve large scale SAT problems 31



in SAT@home volunteer computing project. This project can be used for solving

various computationally difficult combinatorial problems reduced to SAT problems.

The project has successfully solved several instances of the inversion problem of the

keystream generator A5/1 for which the well-known rainbow-method [28] did not

yield any results. We hope that SAT@home will be useful to researchers who work

with computationally difficult combinatorial problems in such areas as discrete opti-

mization, cryptography, combinatorics [20], and bioinformatics [21].

Acknowledgements

This work was supported by Russian Foundation for Basic Research (Grants No.

11-07-00377-a and No. 10-07-00301-a) and European Union Seventh Framework

Programme (FP7/2007–2013) under grant agreement No. 261561 (DEGISCO). We

would like to thank all the volunteers who participated in the project.

References

[1] Eds. Biere A., Heule M., van Maaren H., Walsh T.: Handbook of Satisfiability.

IOS Press, 2009.

[2] Up-to-date links for the SATisfiability Problem. http://www.satlive.org/

[3] Zaikin O., Semenov A.: Large-block parallelism technology in SAT problems. Con-

trol Sciences, No. 1, 2008, pp. 43–50 (in Russian).

[4] Semenov A., Zaikin O., Bespalov D., Posypkin M.: Parallel logical cryptanalysis

of the generator A5/1 in BNB-Grid system. Lecture Notes in Computer Science,

vol. 6873, 2011, pp. 473–483.

[5] Semenov A., Zaikin O., Bespalov D., Posypkin M.: Parallel algorithms for SAT in

application to inversion problems of some discrete functions. arXiv:1102.3563v1

[cs.DC].

[6] Schulz S., Blochinger W.: Parallel SAT Solving on Peer-to-Peer Desktop Grids.

Journal Of Grid Computing, vol. 8, No. 3, 2010, pp. 443–471.

[7] Anderson D. P.: Boinc: A system for public-resource computing and storage. [in:]

Fifth IEEE/ACM International Workshop on Grid Computing, 2004, pp. 4–10.

[8] Desktop Grids for eScience, – A Road map. Produced by DEGISCO.

http://desktopgridfederation.org/documents/10508/57919/RoadMapD.pdf

[9] Cappello F., Djilali S., Fedak G., Herault T., Magniette F., Neri V., Lodygen-

sky O.: Computing on Large Scale Distributed Systems: XtremWeb Architecture,

Programming Models,Security, Tests and Convergence with Grid Future Genera-

tion Computer Science, 2005, pp. 417–437.

[10] Cirne W., Brasileiro F., Andrade N, Costa L.B., Andrade A., Novaes R., Mow-

bray M.: Labs of the World, Unite!!! Journal of Grid Computing, vol. 4, issue 3,

2006, pp. 225–246.

2012/03/12; 22:44 str. 8/10

32 Mikhail Posypkin, Alexander Semenov, Oleg Zaikin



[11] Litzkow M., Livny M., Mutka M.: Condor — A Hunter of Idle Workstations.

[in:] Proc. The 8th International Conference of Distributed Computing Systems,

San Jose, California, June, 1988, pp. 204–111.

[12] Davis M., Logemann G., Loveland D.: A machine program for theorem proving.

Communication of the ACM, vol. 5, 1962, pp. 394–397.

[13] Marqeus-Silva J. P., Sakallah K. A.: GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, vol. 48, No. 5, 1999, pp. 506–521.

[14] Bohm M., Speckenmeyer E.: A fast parallel SAT solver — efficient workload

balancing. Annals of Mathematics and Artificial Intelligence, vol. 17, No. 2, 1996,

pp. 381–400.

[15] Hamadi Y., Jabbour S., Sais L.: ManySAT: a Parallel SAT Solver. Journal on

Satisfiability, Boolean Modeling and Computation, Special Issue on Parallel SAT

Solving, vol. 6, 2009, pp. 245–262.

[16] Schubert T., Lewis M., Becker B.: PaMiraXT: Parallel SAT Solving with Threads

and Message Passing. Journal on Satisfiability, Boolean Modeling and Computa-

tion, vol. 6, 2009, pp. 203–222.

[17] Soos M., Nohl K., Castelluccia C.: Extending SAT Solvers to Cryptographic Prob-

lems. Lecture Notes in Computer Science, vol. 5584, 2009, pp. 244–257.

[18] Menezes A., Van Oorschot P., Vanstone S.: Handbook of Applied Cryptography.

USA, CRC Press, 1996.

[19] Quadratic Assignment Problem Library http://www.seas.upenn.edu/qaplib/

[20] Colbourn C. J., Dinitz J. H.: Handbook of Combinatorial Designs. Chapman &

Hall / Taylor & Francis, 2007.

[21] Eds. Bower J. M., Bolouri H.: Computational Modeling of Genetic and Biochem-

ical Networks, MITPress, 2004.

[22] Volunteer computing project SAT@home http://sat.isa.ru/pdsat/

[23] Kacsuk P., Kovacs J., Farkas Z., Marosi A. C., Gombas G., Balaton Z.: SZTAKI

Desktop Grid (SZDG): A Flexible and Scalable Desktop Grid System. Journal of

Grid Computing, vol. 7, No. 4, 2009, pp. 439–461.

[24] Balaton Z., Gombas G., Kacsuk P., Kornafeld A., Kovacs J., Marosi A. C.,

Vida G., Podhorszki N., Kiss T.: Sztaki desktop grid: a modular and scalable

way of building large computing grids. [in:] Proc. of the 21th Int. Parallel and

Distributed Processing Symposium, Long Beach, California, USA, 2007, pp. 1–8.

[25] The MiniSat page http://minisat.se/MiniSat.html

[26] Supercomputer center of ISDCT SB RAS http://www.mvs.icc.ru/

[27] Distributed computing stats system Free-DC http://stats.free-dc.org/

[28] A5/1 Cracking project http://reflextor.com/trac/a51/wiki

[29] Solutions found in SAT@home http://sat.isa.ru/pdsat/solutions.php

2012/03/12; 22:44 str. 9/10

Using BOINC desktop grid to solve large scale SAT problems 33



Affiliations

Mikhail Posypkin
Institute for Systems Analysis of RAS, Moscow, Russia, posypkin@isa.ru

Alexander Semenov
Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia,
biclop@rambler.ru

Oleg Zaikin
Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia,
zaikin.icc@gmail.com

Received: 9.12.2011

Revised: 29.01.2012

Accepted: 30.01.2012

2012/03/12; 22:44 str. 10/10

34 Mikhail Posypkin, Alexander Semenov, Oleg Zaikin


