COMPUTER SCIENCE e 15 (1) 2014 http://dx.doi.org/10.7494 /csci.2014.15.1.61

SELAWOMIR MALUDZINSKI
GRZEGORZ DOBROWOLSKI

MODEL CHECKING PROCESSES
SPECIFIED IN JOIN-CALCULUS ALGEBRA

Abstract | This article presents a model checking tool used to verify concurrent systems
specified in join-calculus algebra. The temporal properties of systems under ver-
ification are expressed in CTL logic. Join-calculus algebra, with its operational
semantics defined by a chemical abstract machine, serves as the basic method
for the specification of concurrent systems and their synchronization mecha-
nisms, allowing for the examination of more complex systems. The described
model checker is a proof of concept for the utilization of new methodologies of
formal system specification and verification in software engineering practice.

Keywords | join-calculus, model checking, formal methods, automatic software verification

61

http://journals.agh.edu.pl/csci/

62 Stawomir Maludzinski, Grzegorz Dobrowolski

1. Introduction

Recent changes in processor design have influenced software development methodolo-
gies. Increases in computational speed are gained by adding CPU cores rather than
increasing processor frequency. To benefit from this, applications need to have sev-
eral threads of execution; in turn, increased concurrency leads to algorithms whose
execution is difficult to understand and verify. One of the approaches in dealing with
this complexity is to analyze systems using formal methods.

This article describes a model checker which uses join-calculus algebra [10] to
specify concurrent systems with their properties defined in CTL logic [4]. Join-calculus
algebra uses the notions of asynchronous messages, processes, join patterns, and reac-
tion rules to facilitate the formal specification of a concurrent system. Its operational
semantics are defined by a chemical abstract machine (CHAM) [5], where terms are
added and removed from a chemical solution according to reaction rules. Informally,
processes are executed as a result of matching asynchronous messages to join pat-
terns. When such a match occurs, a process is executed with formal parameters of a
message pattern substituted with actual parameters of sent messages. Furthermore,
processes may define new reaction rules which can be used for matching further mes-
sages (reflexive CHAM). The exact matching between messages and join patterns is
not specified and, as a result, it is undetermined which reaction rule will be exe-
cuted. Despite its apparent complexity, this property lets us express more advanced
constructs and synchronization mechanisms between processes. After messages are
matched, they can no longer be used to match other join patterns. The names of join
patterns are recursively bound in the process which defines them and within reaction
rules within that process.

The described model checker is a proof of concept for the usage of new method-
ologies of formal system specification and verification in software engineering practice.
The proposed application of join-calculus algebra for system specification, together
with its representation by a chemical abstract machine, is a 6tnovel approach. The
devised specification language has been designed for ease of use. As new programming
languages (Cw, Join Java) which use the notion of join patterns are developed, the
presented methodology serves as an evaluation of how these languages can be formally
verified. The choice of model checking for system verification was determined by its
successful application in other domains and its recent developments. The possible
extension of the tool through the notion of localizations (defined in distributed join-
calculus [11]) would allow the specification and verification of distributed, mobile, or
multi-agent systems.

The next section will present the state of the art (Sec. 2). Section 3 and its
subsections describe the model checker in more detail. The specification language is
described in section 3.1. Lexical and semantic analyses are outlined in section 3.2,
followed by descriptions of the code generator (Sec. 3.3) and interpreter (Sec. 3.4).
The Kripke structure construction algorithm, which is one of the most important parts
of the model checker, is mentioned in section 3.5. The CTL verification algorithm

Model checking processes specified in join-calculus algebra 63

used in the tool is referenced in section 3.6. Section 4 demonstrates a simple mutual
exclusion problem, which is specified and solved with the model checker. The last
section summarizes the article and presents some possible future extensions.

2. State of the art

Model checking [2, 12] involves the creation of a finite Kripke structure and verifying
whether or not a given property is satisfied by it. Assuming the structure is finite,
a sequence of instructions is given upon completion of the verification algorithm.
This sequence determines whether the property is satisfied (witness) or not satisfied
(counterexample).Most commonly, the verified system is specified using formal meth-
ods such as Petri Nets, finite automata, or process algebra, while the property is
specified by a temporal logic formula. This method is known as temporal logic model
checking, and it has been used successfully in industry to verify communication proto-
cols [14], electronic devices [6], programming languages [7], and multi-agent systems
[16]. Advances in model checking methodologies allow the verification of systems of
considerable sizes [15] which make the verification effective in practice. The authors
of [9] developed a methodology similar to the one described in this paper, where a
nominal calculus is represented by history dependent automata and is model checked
using software tools.

3. Model checking join-calculus algebra

The described tool is implemented in the C programming language using the Flex and
Bison tools [1] to generate a language scanner and parser. Its main modules (Fig. 1)
are separated into two groups; the first does static processing for a system specification
and generates bytecode, while the second loads bytecode, executes it, and creates a
Kripke structure. The Kripke structure is checked for whether or not the CTL formula
under verification is satisfied in the model. When a formula is satisfied, a sequence of
instructions (witness) is generated, which leads to the appropriate state. Otherwise
the model checker outputs sequences which lead to states where the formula is not
satisfied (counterexample).

During the model checking phase, the model checker uses the modules outlined in
Figure 2. The lowest is a module which allocates the necessary memory for the inter-
preter structures. It can also duplicate and compare memory regions where structures
are allocated. In this way, the interpreter may execute different process instructions,
and the model checker can build other Kripke structure worlds. The specification
language uses first-class reaction rules; as a result, it is difficult to deallocate the ac-
tivation frames of the processes. This task is accomplished by the memory manager,
which uses a garbage collector to deallocate all inaccessible interpreter structures.
The interpreter executes all running processes and, in particular, matches sent syn-
chronous and asynchronous messages with join patterns. When a match occurs, it
executes a new process and may stop the current one. In the case of the model checker,

64 Stawomir Maludzinski, Grzegorz Dobrowolski

system specification —>| interpretation |

W%ld
v
/1 lexical analysis | | model construction |
7/
) tokens Kripke structure
// \ A4
K /4 syntax analysis | | model optimisation |
7 / - g ’
7 pars¢ tree
[\ \4
symbol table |— --- —| semantic analysis | | model checking |
\ . N . ®
NN syntax tree <
\ ~)
AN AN A : \
AN N \| type control | £ counterexample
\ Q
N \
N \
\ N v

\1 code generation l—

Figure 1. Model checker phases.

CTL verification

Kripke structure construction

interpreter

interpreter structures

memory management

memory allocation

Figure 2. Model checker modules.

all of the possible process executions and pattern matches are taken into account, and
the model checker module creates a process by executing the Kripke structure build
algorithm. The CTL formula under verification is normalized and verified by the
CTL verification module. The following subsection gives more detail about the model
checker modules.

3.1. Specification language

The described model checker uses formal grammar to specify concurrent systems and
their properties. The specification language is statically typed with first-class reaction

Model checking processes specified in join-calculus algebra 65

rules. Some improvements were made to facilitate the system specification and its
CTL properties — the possibility to express CTL formula under verification and its
fairness constraints. The language uses the following keywords: async, boolean,
ctlspec, else, fail, false, fairness, if, print, return, to, typedef, true, var,
vector, void. Some keywords are reserved for distributed join-calculus location,
go, halt, fail and for the specification of CTL formula constraints ctlspec, fairness.

message pattern

type name(paraml : typel, ..., paramN : typeN)

join pattern

message patternl & ... & message patternN {
process instructions

}

Figure 3. Message pattern, join pattern, process instructions and reaction rule.

reaction rule

A system specification consists of three main parts: types definition, system
specification, and the CTL properties which need to be verified.

The types definition lets us declare types used within the system specification.
Types include interval, enumeration, message pattern, and vector. The introduction
of types allows us to verify whether or not a language can be executed during syntactic
analysis and whether there will be no runtime errors caused by a types mismatch. The
interval and enumeration types allow the smallest possible representation of numeric
values and, thus, limit memory usage. The vector type lets us return multiple values
from a process. The message pattern type allows us to create variables and assign
message patterns of such type.

The system specification contains reaction rules and statements. Figure 3
presents an example reaction rule. Each reaction rule is comprised of a join pat-
tern and corresponding process instructions. A process is executed when a match
occurs between sent messages and the messages patterns of a join pattern. Each
process may define nested reaction rules. Join pattern names are recursively bound
inside each join pattern at the same nesting level. Statements include assignment,
conditional instruction, return, message send, and parallel execution. The values of
variables are calculated with arithmetic expressions. It is also possible to declare
instruction blocks.

The system’s CTL properties are declared as the last part of its specification.
They are expressed using arithmetic and CTL AG, AF, AU, AX, EG, EF, EU,
EX operators.

3.1.1. Example

Figures 4 and 5 demonstrate the specification language’s most significant features.
Figure 4 specifies three reaction rules as well as synchronous and asynchronous mes-
sages. The sending of the synchronous message stops process execution until the

66 Stawomir Maludzinski, Grzegorz Dobrowolski

1 | spec main

2 1

3 void syncMsg() & async asyncMsg() { // join pattern and reaction rule
4 }

5 void syncMsg() {

6 }

7 async asyncMsg () {

8 }

9

10 asyncMsg (); syncMsg (); // a/synchronous message
11 |}

Figure 4. Specification language — example.

process which was invoked finishes. After messages are sent, it is possible to execute
processes which pertain to each of the reaction rules. This non-determinism in choos-
ing reaction rules lets one define more advanced synchronization mechanisms and is
one of the strengths of join-calculus process algebra.

Figure 5 presents other instructions from the specification language. Line 1
defines an integer type which is then used to declare variables (10, 20). Lines 3 —
6 define types of messages which can be returned from reaction rules. Variables of
those types are declared in lines 11 and 12. It is also possible to return a vector of
values (defined in 6) which is used in line 30. Reaction rules are defined in lines 14,
18, and 19. A concurrent statement which is used in line 33 allows us to execute two
processes simultaneously. The specification also demonstrates how to pass message
patterns between processes. In this example, addmul is passed as a parameter of
accept and used to compute some value. Furthermore, lines 15, 23, 25, and 27 show
how to return values from processes.

3.2. Lexical and semantic analysis

In the first step, the model checker tokenizes and parses the system specification. The
scanner removes comments and distinguishes tokens such as keywords, constants,
and identifiers. The parser checks if the specification is a proper sentence in the
language grammar and accordingly builds a parse tree. The parser accounts for
operator priority and associativity. During parsing, all found symbols are placed in
a symbol table. The syntax tree is checked for any semantic errors (e.g. unmatched
types) during semantic analysis. Variable scope is also analyzed for proper value
assignment. When the specification does not yield any syntactic or semantic errors,
a bytecode is generated.

3.3. Code generation

The generated bytecode uses instructions which are interpreted by a stack machine.
There are eight groups of instructions: stack operation (push, pop, dup), jump (con-
ditional, unconditional), message send (synchronous, asynchronous), return, store,

Model checking processes specified in join-calculus algebra 67

1 | typedef int { O .. 1023 } // types declaration
2

3 |typedef int call t(int);

4 |typedef int accept f(int);

5 |typedef void accept t(accept f);

6 | vector rv_v { call_t, accept_ t }

7

8 | spec rendezvous

o | ¢

10 var value : int, // variable declaration
11 call : call t,

12 accl : accept t;

13

14 int addmul(val : int) { // join pattern

15 return val % val + val;

16 }

17

18 rv_v newRendezVous () {

19 int call(vi : int) & void accept(func : accept f) {
20 var r : int;

21

22 r = func(vi);

23 return r to call;

24 |

25 return to accept;

26 }

27 return call , accept;

28 }

29

30 call ;accl = newRendezVous ();

31

32 value = call (12); // message send

33 | // concurrent statement
34 accl (addmul);

35 |}

36

37 | ctlspec AG (value == 156);

Figure 5. Specification language — rendezvous.

block (begin, end), concurrency (beg, end), and primitives. As the tool uses a stack
machine, all expressions are transformed into reverse Polish notation.

3.4. Interpreter

The interpreter uses six basic structures, depicted in Figure 6 and Figure 7. Each
process (PROC.rrule) is associated with a reaction rule (RRULE) which con-
tains the names of messages needed to execute it (RRULE.msgN), literals in byte-
code (RRULE.literalN), pointers to reaction rules nested in the reaction rule itself
(RRULE.rruleN), and bytecode. Processes execute the instructions (PROC.IP of
reaction rules. Process data is kept in messages used to execute it (FRAME.msgN),
in activation frames (FRAME.varN), and in blocks (BLOCK.vars). Local data
is kept on a stack (PROC.stack) whose top is pointed to by PROC.SP. The
current frame and block are pointed to by the PROC.AF and PROC.HC links.
For optimization reasons, the PROC.AF link always points to the current acti-

68 Stawomir Maludzinski, Grzegorz Dobrowolski

vation frame or block, while PROC.HC points to the process activation frame.
FRAME.parent is a data access link to the activation frame from which each given
process was executed. A data access link lets us access variables which are nested
in upper levels. When a code block is executed, PROC.IP and PROC.SP are
stored in BLOCK.IP and BLOCK.SP respectively. A block of code holds a lo-
cal stack (BLOCK.stack) which is used to perform calculations. Sent messages
(MESSAGE) are delivered to activation frames (FRAME.msg#). Each mes-
sage contains its name (MESSAGE.name) and the values of its parameters (ME-
SSAGE.params). They also hold control links (MESSAGE.proc) to processes
which have sent synchronous messages. A message control link allows the return of
execution to the original process which sent the synchronous message. When pro-
cesses are created using parallel instructions, their PROC.parent proc control link
points to their parent process and allows the resumption of execution when both end.
The running state of a process is kept in the PROC.running variable. The ability
to store and return message patterns from reaction rules is implemented using clo-
sures (RRPOINTER), which hold the name of the message and a pointer to the
activation frame.

PROC FRAME MESSAGE BLOCK RRULE RRPOINTER
parent proc parent name parent #msgs name
AF rrule proc P #literals frame
HC #Fmsgs#H params SP F#rrules
rrule msgl varl #vars
P msg2 . msgl
SpP . varN e
running msgN stack msgN
stack varl literall
varN literalN
rrulel
rruleN
bytecode

Figure 6. Interpreter structures.

PROC FRAME MESSAGE 4 RRULE
parent:% parent name . ‘#msgs

AF rrule proc P 2 #literals
HC #msgs# @ params & rrules
rrule msgl J #vars
r @ msg2 " ! msgl access link
SP . .
running ‘. msgN msgN
stack . varl literall
T — — — - control link
varN literalN
rrulel
S rruleN i 1
MESSAGE A B b do e reaction rule asso-
o) ytecode ciation

name L,
proc o
params _

Figure 7. Running process with access and control links.

Model checking processes specified in join-calculus algebra 69

Interpreter structures allow us to execute processes. Messages are delivered and
matched to reaction rules in order to create new processes. In the case of synchronous
messages and parallel instructions, the parent process is stopped and the child process
starts execution. For the model checker, how the process scheduler works is not
relevant. The model checker algorithm finds all possible message matches and process
instructions.

The execution of processes and creation of interpreter structures leads to a
spaghetti stack. Such structures are difficult to deallocate after a process stops exe-
cution. Thus, a garbage collector is used to remove inaccessible structures.

3.5. Kripke structure construction algorithm

The general Kripke structure construction algorithm described in [3] needs to be
modified for the special case when join- calculus algebra is used. The majority remains
the same, with more detailed steps for constructing states that result from join pattern
matching. The algorithm is depicted in Figure 8. Initial state Sy represents the state
of execution of the main process. Subsequent states are constructed by the algorithm’s
main loop (line 3). The algorithm uses two sets of states: W and W,,. Set W contains
all states which are taken into account in its current iteration. States which are to
be taken into account in the following iteration are added to set W,,. The algorithm
finishes its execution when no new transitions have been added.

1 W = {So}

2 |8 ={}, Wo = {}

3 | while (transition added) {

4 while (W # 0) {

5 choose s € W,

6 W=W\ {s};

7

8 create new states {s,} perm msgs rrules, label rrule;

9 if (s, € S) make transition R(s,sn);

10 else { make transition (s,s,); W, = W, U {sn,}; S =S U {sn} }
11

12 Vp; € s create new state {s,}; exec statement; label process

13 if (s, € S) make transition R(s,sn);

14 else { make transition R(s,sp); Wp = Wy U {sn}; S =S U {sn} }
15 }

16 W= W,

17 |}

Figure 8. Kripke structure creation algorithm.

The first step (line 5) is to choose a state from set W for which no transitions
have been made. For such a state, new states are created which result from the
execution of the current instruction of all running processes (line 12). If such a state
already exists, then the transition is made to it (line 13); otherwise, a new state is
created (line 14) and added to set W,,. Transitions are labeled with the identifier of
the process which executed the statement. After iterating over all states in W, the
set of newly created states W), is taken into account (line 16).

70 Stawomir Maludzinski, Grzegorz Dobrowolski

Figure 9. Kripke structure creation algorithm

New states are created by executing process statements (which modify the process
instruction pointer). Assignments modify the values of variables. Conditional jumps
change the process instruction pointer. Concurrent instructions create two processes
which execute simultaneously while their parent process is stopped. Execution of the
parent process resumes when both of the sub-processes finish their execution and, as
a result, the subsequent iteration of the Kripke construction algorithm needs to take
both of them into account. What is more interesting is the result of sending syn-
chronous and asynchronous messages (lines 8-10). Transmission of the synchronous
message stops the current process; afterwards, it is possible that one of reaction rules
will be executed. A similar case holds for the asynchronous message; however, the
process which sends it is not stopped. The Kripke construction algorithm needs to
create states which result from all possible permutations of matches between reaction
rules and sent messages (both synchronous or asynchronous). As some other reac-
tion rules may be invoked by matching messages to the join pattern, the algorithm
also needs to construct a state when no messages have been matched (state S + 1
on Figure 9). The CTL labeling algorithm which is used in the tool operates on the
predecessors of a Kripke world. For this reason, all Kripke structure worlds store their
predecessors.

3.6. CTL verification

The proposed tool uses a CTL-labeling algorithm [8]. The algorithm labels all Kripke
structure states with subformulas of a formula being verified. As any CTL formula can
be expressed using only five operators: =, V, EG, EX, EU, the algorithm labels only
states which satisfy these operators. Thus, a formula is normalized before verification;
i.e., expressed using only these operators. If the initial state of the Kripke structure is
not labeled with a label from the formula under verification, then the whole formula
is unsatisfied and a counterexample is generated. Otherwise, a witness is generated.

4. Example: mutual exclusion

Figures 10 and 11 demonstrate the academic problem of a race condition between
two running processes. As a result of instruction interleaving in the main process, the
total variable is set to an improper value. The specification in Figure 10 defines two

Model checking processes specified in join-calculus algebra 71

processes (line 13) which are executed concurrently. A property of the system under
verification is defined by the CTL formula AF (total == 2500), and one of the coun-
terexamples generated by the utility is presented in Figure 11. The counterexample
(read bottom-up) shows the sequence of instructions which lead to the state where
the value of the variable total equals 3500, which is improper.

© 0 N O G A W N =

T T T S S
© W N oA W= O

[N T A NI CR

I I N T R S
- O ©®N® oA W N O

typedef int { 0 4095 }
spec account {
var total int , 1]//
subl int , 2 | // AF (total == 2500)
sub2 int; 3 |//
4 | counterexample (total == 3500)
total = 2000; 5 | proc: 0 ip: 19 <proc end 0>
6 | proc: 2 ip: 17 <proc end 2>
{ subl = total; 7 | proc: 2 ip: 16 total = sub2;
subl = subl — 1000; 8 | proc: 2 ip: 15 sub2=sub2-+1500;
total = subl; 9 | proc: 1 ip: 13 <proc end 1>
Yoo 10 | proc: 1 ip: 12 total = subl;
sub2 = total; 11 | proc: 2 ip: 14 sub2 = total;
sub2 = sub2 + 1500; 12 | proc: 1 ip: 11 subl=subl —1000;
total = sub2; 13 | proc: 1 ip: 10 subl = total;
} 14 | proc: 0 ip: 13 |
15 | proc: 0 ip: 8 total = 2000;
ctlspec AF (account.total = 2500); 16 | proc: 0 ip: O <proc beg 0>
Figure 10. Race condition. Figure 11. Race condition. Counterexample

typedef int { 0 4095 }

spec account

{

var total int;

void wait () & async free () {
return; }

void signal () { free ();
return; }
void credit (amount int) {
var subl int;
wait ();
subl = total;
subl = subl + amount;
total = subl;
signal ();
return;

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

AF (total == 2500).

void debit (amount int) {
var sub?2 int;
wait ();
sub2 = total;
sub2 = sub2 — amount;
total = sub2;
signal ();
return;
}
free ();
total = 2000;
credit (1500);
|
debit (1000);
}
ctlspec AF (account.total == 2500);

Figure 12. Mutual exclusion problem. Semaphore and critical section.

72 Stawomir Maludzinski, Grzegorz Dobrowolski

The problem shown above is solved by introducing a semaphore [13]. Its specifi-
cation is shown in Figure 12 (lines 7-10). The semaphore is defined using join patterns
(line 7) and its state is set to free in line 35. This allows access to the critical section
for any one of the processes. A process which sends a synchronous wait message is
granted access to the critical section. As the asynchronous message free is removed
from the chemical abstract machine, no other process can continue its execution after
sending a subsequent synchronous wait message. After the process which is inside
the critical section sends the synchronous message signal, the message free will be
re-added to the abstract state machine. Thus, any other process which previously
executed the wait method can enter the critical section.

The specification was verified by the described tool and no counterexample could
be found. The tool printed only witnesses which lead to a proper system state.

5. Summary and future extensions

The proposed model checker can be used for the specification and verification of con-
current systems. The tool uses join-calculus process algebra to define and reason
about complex concurrent systems and is an interesting example of how concurrency
can be modeled thanks to the usage of the CHAM, through chemistry abstraction.
Simple notions such as asynchronous messages, join patterns, and reaction rules serve
as the basis for their specification. The way in which join-calculus algebra is used to
verify concurrent systems differs from specifications which use finite state machines,
Petri-nets, or temporal logics. The developed methodology offers a high-level ab-
straction, where reaction rules are first class and can be passed between processes.
This possibility offers sophisticated methods of system specification. In this paper, we
presented two synchronization mechanisms, semaphore and rendezvous. It is possible
to define other mechanisms, such as buffers, barriers, and synchronous and asyn-
chronous channels, as well as communication protocols. The presented model checker
is still under development, while its major modules have already been implemented
— scanner, parser, semantic and types validator, code generator, interpreter, Krip-
kestructure construction algorithm, and CTL formula verification algorithm. There
are still some tasks to be completed (implementation of labels, code loader). Since the
tool is written in the C programming language, it is possible to extend it with Kripke
structure optimizations such as cone of influence, on-the-fly verification, and others.
It is expected that the model checker can be extended by the notion of localizations
which are defined by distributed join-calculus [11]. Such an extension would create
the possibility of verifying mobile or multi-agent systems, where mobility and agents
would be specified using the notion of locations. The article contributes to the field
of formal methods in finding best formalisms, methodologies, and tools, which bridge
the gap between theoretical results and the everyday practice of software engineering.

Model checking processes specified in join-calculus algebra 73

References

[1] Aaby A.A.: Compiler Construction using Flex and Bison. Walla Walla College,
2003.

[2] Baier C., Katoen J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499.

[3] Ben-Ari M.: Mathematical Logic for Computer Science. Prentice-Hall Interna-
tional Series in Computer Science. Springer, 2001. ISBN 9781852333195,

URL http://books.google.pl/books?id=hzW1Ey1qqR8C.

[4] Ben-Ari M., Manna Z., Pnueli A.: The Temporal Logic of Branching Time. In:
Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’81, pp. 164-176. ACM, New York, NY, USA,
1981. ISBN 0-89791-029-X. URL http://dx.doi.org/10.1145/567532.567551.

[5] Berry G., Boudol G.: The Chemical Abstract Machine. In: POPL ’90: Proceed-
ings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 81-94. ACM, New York, NY, USA, 1990. ISBN 0-89791-
343-4. URL http://dx.doi.org/http://doi.acm.org/10.1145/96709.96717.

[6] Cimatti A., Clarke E., Giunchiglia E., Giunchiglia F., Pistore M., Roveri M., Se-
bastiani R., Tacchella A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Proc. International Conference on Computer-Aided Verifi-
cation (CAV 2002), LNCS, vol. 2404. Springer, Copenhagen, Denmark, 2002.

[7] Dennis L. A., Fisher M., Webster M. P., Bordini R.H.: Model Checking Agent
Programming Languages. Automated Software Engg., 19(1): 5-63, 2012. ISSN
0928-8910. URL http://dx.doi.org/10.1007/s10515-011-0088-x.

[8] Edmund M., Clarke J., Grumberg O., Peled D. A.: Model Checking. MIT Press,
Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

[9] Ferrari G.L., Montanari U., Tuosto E.: Model Checking for Nominal Calculi.
In: Proceedings of the 8th International Conference on Foundations of Software
Science and Computation Structures, FOSSACS’05, pp. 1-24. Springer-Verlag,
Berlin, Heidelberg, 2005. ISBN 3-540-25388-2, 978-3-540-25388-4.

URL http://dx.doi.org/10.1007/978-3-540-31982-5_1.

[10] Fournet C., Gonthier G.: The Reflexive CHAM and the Join-calculus. In: POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 372-385. ACM, New York, NY, USA, 1996. ISBN
0-89791-769-3.

URL http://dx.doi.org/http://doi.acm.org/10.1145/237721.237805.

[11] Fournet C., Gonthier G., Lévy J.J., Maranget L., Rémy D.: A Calculus of Mobile
Agents. In: Proceedings of the 7Tth International Conference on Concurrency
Theory (CONCUR’96), pp. 406-421. Springer-Verlag, 1996.

URL citeseer.ist.psu.edu/fournet96calculus.html.

[12] Grumberg O., Veith H., eds.. 25 Years of Model Checking — History,

Achievements, Perspectives, Lecture Notes in Computer Science, vol. 5000.

74 Stawomir Maludzinski, Grzegorz Dobrowolski

Springer, 2008. ISBN 978-3-540-69849-4.

[13] Herlihy M., Shavit N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008. ISBN 0123705916,
9780123705914.

[14] Holzmann G.: SPIN Model Checker, Primer and Reference Manual. 1st. ed.
Addison-Wesley Professional, 2003. ISBN 0-321-22862-6.

[15] Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J.: Symbolic
Model Checking: 10%° States and Beyond. In: Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, pp. 1-33. IEEE Computer So-
ciety Press, Washington, D.C., 1990.

URL citeseer.ist.psu.edu/burch90symbolic.html.

[16] Niewiadomski A., Penczek W., Szreter M.: A Model Checker for Real Time and
Multi-agent Systems. In: Proceedings of VerICS 2004, pp. 88-99. Humboldt
University, 2004.

Affiliations

Stawomir Maludzinski
AGH University of Science and Technology, Krakow, Poland,
slawomir.maludzinski@gmail.com

Grzegorz Dobrowolski
AGH University of Science and Technology, Krakow, Poland,
grzelaQagh.edu.pl

Received: 22.06.2013
Revised: 27.08.2013
Accepted: 20.12.2013

