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DEFINITION AND INTERPOLATION OF DISCRETE
METRIC FOR MESH GENERATION ON 3D SURFACES

The article concerns the problem of a definition of the control space from a set of discrete
data (metric description gathered from different sources) and its influence on the efficiency of
the generation process with respect to 2D and 3D surface meshes. Several methods of metric
interpolation between these discrete points are inspected, including an automated selection
of proper method. Some aspects of the procedures of creation and employment of the mesh
control space based on the discrete set of points are presented. The results of using different
variations of these methods are also included.
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DEFINICJA I INTERPOLACJA DYSKRETNEJ METRYKI
DLA TWORZENIA SIATEK
NA POWIERZCHNIACH TRÓJWYMIAROWYCH

Artykuł opisuje zagadnienie definicji przestrzeni kontrolnej (sterującej procesem generowa-
nia siatek) na podstawie dyskretnych danych (opisu metryki pozyskanego z różnych źródeł)
oraz jej wpływu na wydajność procesu generacji siatek na płaszczyźnie oraz powierzch-
niach trójwymiarowych. Rozpatrywane są różne metody interpolacji metryki w obszarach
pomiędzy dyskretnymi punktami ze zdefiniowaną metryką, włącznie z automatyczną metodą
wyboru odpowiedniej metody interpolacji. Przedstawione są zagadnienia związane z proce-
sem tworzenia i wykorzystywania przestrzeni kontrolnej opartej na informacji z dyskretnego
zbioru punktów. Załączone są także przykładowe wyniki zastosowania różnych wariantów
opisywanych metod.

Słowa kluczowe: generacja siatek, powierzchnie parametryczne, dyskretna metryka, trian-
gulacja Delaunaya

1. Introduction

In many areas such as numerical computation or computer graphics there are used
meshes, defined as an adequate partitioning of the modeled domain into elements with
the required geometrical shape.
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An important issue during the construction of meshes is supervising the quality
of the created elements with respect to their size and (optionally) stretching in the
given direction. In the usual approach, the concept of metric [1, 2, 3, 4, 5] and control
space [6, 7] is introduced. Similar method was used in the mesh generator developed
by Authors [8], where meshes are created using the Delaunay property. The article
concerns the problem of influence of the definition of the metric and of the control
space on the efficiency of the generation process (with respect to 2D and 3D surface
meshes).
Requirements regarding the shape and size of elements may come from various

sources (curvature of surfaces or boundary curves, user specification, adaptation data
from the simulation process, etc.). In order to use information about metric coming
from multiple sources of different type, an uniform representation can be used in form
of a set of discrete nodes. In case of metric specification defined in a continuous man-
ner, an additional algorithm of selecting the proper set of discrete nodes is required,
which represents the continuous space with expected precision.
The set of nodes with specified metric value is the basis of the construction of

the control space. From the formal point of view, the control space is treated as a
covering of the domain, divided into subdomains. Thus, the control space itself may
be treated as a mesh structure. In the developed generator this structure can be stored
in a various ways: regular grid (rectangular) or triangular mesh. In the second case,
the points with the prescribed metric are used as nodes of this triangulation.
While creating or modifying the resultant mesh, the generator refers to the data

stored in a particular elements of the control mesh. In the presented approach, the
main information obtained from the control space is the value of metric defined in
the nodes of the control space. In order to calculate the value of metric at any given
point of the domain, it’s necessary to adequately interpolate the metric between the
control nodes. The appropriateness of the interpolation is mainly dependent on the
selection of nodes.
In this article the following problems are described: metric definition and employ-

ment, procedure of creation of the mesh control space, and some methods of metric
interpolation from a discrete set of points. The results of using different variations of
these methods are also included.

2. Definition and Employment of Metric

The metric at any point of the domain is defined by means of the matrix Ms, which
is used for transformation of the coordinates of points. The connection between the
defined metric and the desired stretching (ls, lt) of element in the direction α is given
as follows:

Ms =
[
cosα − sinα
sinα cosα

] [
ls 0
0 lt

]
(1)

where ls is the required length of edges along the selected direction (given by α), and
lt is the required length of edges in the orthogonal direction.
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For 3D surfaces given through a parametric mapping u(s, t) an additional matrix
Mp (calculated from the first fundamental form I(x,y) ≡ 〈Dp(x), Dp(y)〉 of the
parametric surface patch p(u, v), following the equation 2) has to be used to account
for the potential distortion of the parameterization.

MpM
T
p =
[ 〈pu,pu〉 〈pu,pv〉
〈pu,pv〉 〈pv,pv〉

]
(2)

The resultant matrix M is then evaluated as a product of the two matrices Ms
and Mp. Thus the defined matrix representation of the metric is used during the
generation process for transformation of points coordinates.

2.1. Employment of Metric for Mesh Generation

If the parametric surfaces are used in the geometrical description of the modeled
domain, each of them is discretized separately in its own parametric space. For each
operation, which requires the evaluation of geometrical properties (length of an edge,
area of an element, angles, etc.) the metric is calculated and used for transformation
of coordinates of the mesh points.
During the construction of the mesh the metric transformation must be applied

in the following phases:

1. Generation of boundary nodes. Nodes are placed iteratively, starting from one of
the ends of the boundary segment. For each new node, a control space is used
for establishing the metric for this point. The placement of the new node pi+1 is
then established in a way, which should satisfy the formula:

d(pi, pi+1)Ma = 1 (3)

where Ma is an average of metrics Mi and Mi+1.
If any boundary is adjacent to several surface patches, the discretization process
of such contour is performed in the parametric space and with the metric defined
in one selected surface patch. After the discretization is complete, the placement
of nodes is evaluated according to the metric defined in each of the adjacent
surface patch and is refined if needed.
2. Triangulation of boundary nodes. The generation method used for creation of
triangular mesh is based on the Delaunay property, which can be enforced in
different ways. The first operation for each point inserted into the triangulation
is searching for the containing triangle, which operation doesn’t require metric
specification. Next, one of the Delaunay retriangulation method is used (empty
cavity or edge swapping). For both methods the proper metric (for the inserted
point) is set at the beginning and treated as constant in the subsequent retrian-
gulation steps.
3. Insertion of inner nodes. After the triangulation of all boundary nodes, the mesh
is refined by insertion of inner nodes. During this operation, the elements with
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the worst quality are selected for introduction of a new node. The metric is used
for establishing the quality of triangles and calculating the coordinates of the new
nodes to be inserted. Since the new node is being inserted in the circumcenter
of the selected triangle, which can be quite distant from the corrected triangle,
an additional check is made for conformity of the currently set metric and the
metric at the inserted point. If these two metrics are too different, the insertion
of point is abandoned.
4. Smoothing. The metric transformation is used for establishing the geometrical
properties used by the smoothing procedures. Depending on the type of the
method, the metric is retrieved from the control space for the coordinates of
the inspected point (e.g. Laplace smoothing) or for the middle of the inspected
elements.
5. Conversion to quadrilaterals. In the presented method of mesh generation, an
indirect frontal method of conversion of the triangular mesh into the quadrilateral
one is used. The value of the metric is set for the middle point of each front edge,
used as a base of the new quadrilateral to be formed. The metric is being used for
evaluating lengths of edges and inner angles, which directly influences the process
of conversion. Additionally, the metric is used for determining the ordering of the
front edges and during all operations of local smoothing in the neighborhood of
the created quadrilaterals.
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Fig. 1. Control space calls during different phases of mesh generation

Figure 1 presents typical percentage of calls to the control space for establishing
the proper value of metric, at the subsequent stages of the mesh generation process.

3. Definition of Control Space

During the generation of the mesh, a separate control space is created and used for
each surface patch. The control space provides the information about the desired size
and stretching of elements throughout the discretized domain.
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The control space is set up before the process of generation starts, and is used
during all subsequent phases of mesh generation. The control space is defined basing
on information gathered from different sources.
Depending on the user requirements, the following data can be used:

• curvature of the surface patches (calculated analytically or approximated),
• curvature of the boundary curves,
• user-defined size map (for discrete points, curves, subdomains or whole surface
patch),

• adaptation data (usually given in discrete points — nodes of the mesh from the
previous adaptation step),

• proximity of domain boundaries,
• small features.

3.1. Definition of Metric in the Nodes of Control Space

To increase the possibility of precise definition of size and stretching of elements
throughout the domain, the metric can be defined in each discrete node in a few ways
(similar approach was proposed in [9]):

• (Pi,Mi) — defines the precise metric Mi in the ith control point, and is used
together with the nearby control nodes for interpolation of the metric in some
neighborhood (depending on the placement of control nodes and the selected
method of interpolation);

• (Pi,Mi, ri) — metric Mi is treated as constant in the neighborhood of the point
Pi with the radius ri. Outside this circle, the metric is interpolated together with
the nearby control nodes;

• (Pi,Mi, ri,M ′i , r′i) — in the point Pi and its neighborhood with radius ri the con-
stant metric Mi is assumed. Outside this radius the metric is gradually changed
fromMi toM ′i in the range of the second radius r

′
i. Outside the circle with radius

ri + r′i, the metric M
′
i is used for interpolation (see Fig. 2).

f(M ´,M )
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Fig. 2. Extended metric definition in discrete point

3.2. Construction of the Control Mesh

The process of constructing the control mesh can be divided into the following steps:
1. Establishing the set of discrete points, depending on the source of data.
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2. Triangulation of this set. The triangulation method used here is identical with the
one used for creation of the proper mesh, with metric set to identity. Additionally,
for points placed too close to each other, the resultant metric is calculated as a
minimum of both metrics, and is introduced in one point only.
3. Refinement of the control mesh. Since in some cases the given set of control
nodes can be distributed in the domain in an irregular manner, an additional
refinement procedure can be used. If required, additional nodes can be inserted
into the control mesh, with the ascribed metric value calculated from the current
control mesh. The goal of this operation is to increase the overall geometrical
quality of the control mesh, which usually helps to locate the containing triangle
of the inspected point in a possibly short time. Since searching of the containing
triangle is the initial step of retrieving metric information from the control step,
the overall efficiency of the generation process can be increased as well.
4. Classification of the interpolation type. Optionally, should different interpolation
methods be used during the generation, all control triangles have to be classified
according to the required interpolation type (Sec. 4.2).

4. Utilization of the Control Space

During the mesh generation, each time the local metric has to be established at the
given coordinates, the proper value is retrieved from the control space. This operation
can be summarized in the following manner:

1. Proximity check. If the coordinates of the inspected point are close enough to
the point, where the metric was calculated most recently, the current metric is
considered valid, and no further operation is needed. The maximum distance
between points, which can be called ”close enough” is calculated in the metric
space (i.e. it’s dependent on the required length of edges according to the current
metric with a scaling factor). This proceeding is based on the assumption that
the proper metric shouldn’t significantly change over the single element defined
by the metric itself.
2. Search for the containing triangle, which is done by traversing the triangles in the
mesh in the direction of the given point. The additional quadtree structure (built
during the triangulation step) is used for selection of good starting triangle.
3. Check for the extended metric definition. After the triangle is located, its vertices
are examined. If the metric definition in one of the vertices of the triangle has
a nonzero radius r or r′ (see Sec. 3.1) and the inspected point is located within
the 1 st or 2 nd neighborhood, the proper metric is immediately returned. If the
point is located in such neighborhood of several vertices, the minimum metric is
calculated.
4. Interpolation. Depending on the selected interpolation method (or the classifi-
cation type of the triangle — for automatic mode), the proper set of vertices is
gathered and the metric is calculated as described in Sec. 4.1.

94 Barbara Głut, Tomasz Jurczyk



4.1. Interpolation of Metric in the Control Mesh

If the metric should be interpolated from the control space data, the average matrix
is calculated from the one of the following set of control nodes (Fig. 3):
Vs — single arbitrary vertex of the triangle,
Vt — all vertices of the triangle,
Vo — all vertices of all the triangles which have this point theirs circumcircles.

x xx

a) b) c)

Fig. 3. Selection of vertices for metric interpolation: a) single vertex of the containing triangle
Vs; b) all vertices of the containing triangle Vt; c) all vertices of all triangles containing

inspected point (marked with ×) in theirs circumcircles Vo

After the proper set V∗ of vertices is selected, the resultant metric in the point
P is calculated following the formula:

MP =
1∑
ωi

∑
Miωi (4)

where summation is carried out for all i ∈ V P∗ and
ωi = d(P, Pi)−2 (5)

4.2. Automatic classification of control triangles

The method of selecting the vertices used for the calculation of the average metric can
be chosen arbitrarily for all triangles of the control space, or it can be automatically
ascribed for the single control elements. The automatic selection allows to use the
simplest interpolation method, which is still able to give proper metric for points
within the control triangle.
If the interpolation method is to be chosen automatically, a preliminary classifi-

cation of the control triangles is required after the triangulation of all control nodes.
The classification is carried out by calculation of the metric in the representative
points (middle point of the triangle, middle points of the triangle edges) within the
triangle, using two different interpolation methods (Mt and Mo, calculated from sets
Vt and Vo respectively). Next, the conformity coefficient of these metrics is assessed
according to the Formula 6 [10].

δ = maxDij , where D =MoM−1t (6)

If the established coefficient is smaller then a given accuracy ε for all tested points,
the method Mt is selected as less costly. In such case the metrics in the vertices of
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the triangle are additionally compared, and if they all are identical (with the same
conformity coefficient and accuracy as before), the simplest methodMs is selected for
this triangle.

5. Results

Three different examples were elected for illustrating the described aspects of using
discrete control space. In first two examples the 2D mesh was generated for a rectan-
gular domain. However, the number and placement of control nodes with the defined
metric was different in these cases. The third example shows mesh generated for 3D
analytical surface, where various sets of discrete control nodes were generated based
on the curvature of the surface.
The meshes were generated for various methods of selection of control nodes

for metric interpolation, including the automatic classification of control mesh ele-
ments. The effects of control mesh refinements by insertion of additional nodes were
also compared. Meshing times given in the statistics were obtained at 2.7GHz Intel
Pentium IV.

5.1. Example

Figures 4 and 5 present meshes generated for different methods of metric interpolation
within the control mesh. The metric (identical for both meshes) is prescribed in four
discrete points, marked on Figure 6a, where the isotropic metric M1 defines edge
lengths to be 10 times smaller then in the isotropic metric M2. The created control
mesh is presented on the Figure 6b.

a) b)

Fig. 4. Triangular meshes for metric interpolation from a) control vertices of Vt;
b) control vertices of Vo

Table 1 gives the quality indicators of conformity of these meshes (both trian-
gular and quadrilateral) to the defined control space, expressed by the edge lengths
calculated in the local metric (average value μ and standard deviation σ).
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a) b)

Fig. 5. Quadrilateral meshes for metric interpolation from a) control vertices of Vt;
b) control vertices of Vo

a) b)

M1 M1

M2 M2

Fig. 6. Control space for meshes of Figure 4: a) set of control nodes;
b) triangulation of control nodes

Two metric interpolation methods were used (based on sets Vt and Vo, denoted
with proper subscripts) for both mesh generation and evaluation. NP and NE is the
number of mesh points and elements in the resultant mesh.

Table 1
Statistics for meshes of Figures 4 and 5

NP NE μt σt μo σo
Tt 3063 5970 1.046 0.17 0.975 0.21
To 2730 5284 1.098 0.23 1.044 0.15
Qt 2680 2602 1.047 0.23 0.979 0.25
Qo 2641 2553 1.048 0.21 0.986 0.19
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5.2. Example

Figures 7a and 8a present triangular meshes generated for relatively larger number
of control points (prescribed by user with the extended metric definition (Sec. 3.1),
placed in an irregular manner (in both cases the initial set of control points is identi-
cal). However, in case of mesh of Figure 8a the control mesh is additionally improved
by insertion of inner nodes. The appropriate control meshes are presented on Figures
7b and 8b.

a) b)

Fig. 7. Mesh generation for irregular distribution of control
nodes: a) created mesh; b) control mesh

a) b)

Fig. 8.Mesh generation for irregular distribution of control nodes with insertion of additional
inner nodes: a) created mesh and b) control mesh

As can be seen on Figure 7b, nonuniform placement of control nodes may lead
to creation of badly shaped triangles, which can decrease the efficiency of using this
control space structure. Elongated triangles typically render the process of finding the
containing triangle (which is done by traversing mesh triangles in the direction of the
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given point) more time consuming. Additionally, if the third method of interpolation
is selected, the average number of vertices in the set Vo is increased.

Table 2
Statistics for meshes of Figures 7a and 8a created
using various metric interpolation methods

NT NT/s μ σ μo σo
103 103

Vt 25.0 6.1 1.003 0.19 1.008 0.22
Vo 25.5 5.7 1.003 0.18 1.003 0.18
Vx 25.5 5.8 1.003 0.19 1.005 0.19
Vt+I 28.0 11.5 1.006 0.18 1.016 0.18
Vo+I 28.7 10.1 1.012 0.18 1.012 0.18
Vx+I 28.7 10.2 1.012 0.17 1.012 0.17

Table 2 presents the comparison of the statistics and generation time for meshes
created with and without insertion of additional control points, and using different
method of metric interpolation. Vx denotes selection of methods Vs, Vt and Vo based
on the classification of single triangles of the control mesh. Letter I denotes using
insertion of inner nodes into the control mesh. NT is the number of triangles in the
resultant mesh, NT/s is the speed (number of triangles per sec.) of the mesh genera-
tion process. μ and σ are the mean edge length and standard deviation measured with
the metric interpolated with method, which was used for mesh generation. Values of
μo and σo are calculated using Vo metric interpolation method in all cases.

Table 3
Statistics for control meshes of Figures 7b and 8b

ms mt mo Ns Nt No
[%] [%] [%] [%] [%] [%]

Vx 0.6 75.0 24.4 4.3 80.1 15.6
Vx+I 1.9 73.4 24.7 11.3 55.0 37.7

Table 3 presents the results of classification of control mesh triangles, according
to the required metric interpolation type (Sec. 4.2). Values ms, mt and mo show
the percentage of calls to the control space for establishing the metric value, where
the appropriate metric interpolation types (Vs, Vt and Vo) were used, basing on the
classification of the control triangles. Ns, Nt and No are the percentages of control
triangles classified for various groups. In the second mesh, where additional inner
control nodes were inserted, the total number of elements in the control mesh increased
from 622 to 1466 triangles.

The number of triangles qualified for the third category (No) was larger in the
control mesh with additional control nodes. However, the number of calls for the
control space resulting in using this kind of interpolation (mo) wasn’t influenced
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much, which seems to be caused by the specific character of this example. On the
other hand, the evident increase of the efficiency of the process of mesh generation
for control space meshes refined with additional nodes can be observed in a majority
of tests, especially for preliminary irregular placement of control nodes.

5.3. Example

Figures 9 and 10 present triangular meshes generated for 3D analytical surface defined
by formula (7).

f(x, y) = 1.5 sin(2x) cos
(y
5

)
exp
(
−x
2 + y2

1000

)
, x, y ∈ [−6, 6] (7)

The description of element sizing and stretching was automatically recognized
from the surface curvature in a regular set of points, which was then used by the
mesh generator as a set of control nodes with metric description.

Fig. 9. Triangular mesh of an analytical surface

Fig. 10. Closeup of the mesh of Figure 9

Table 4 presents the results of mesh generation basing on various number (40 000,
10 000, 2500) of control nodes with metric description. Like before, Vx denotes method
using the automatic classification of control triangles. The letter I denotes insertion of
inner nodes into the control mesh, while R denotes version of the algorithm, where calls

100 Barbara Głut, Tomasz Jurczyk



to the control space for obtaining the value of the proper metric may be skipped, if the
considered point is close enough to the last point, where the metric was established.
NPc is the number of control nodes, NT number of triangles in the resultant mesh,
NT/s and tg are the speed and the overall time of the mesh generation process. Since
the number of control points (and therefore the size of the control mesh) is relatively
large, as compared with the size of the resultant mesh, the amount of time tc required
for the creation of control spaces is given.

Table 4
Statistics for the surface mesh of Figure 9

NPc NT NT/s tg tc μo σo
103 103 103 [s] [s]

Vx+IR 40.0 42.7 4.48 9.5 2.63 0.985 0.18
Vx+I 40.0 42.8 3.24 13.2 2.70 0.984 0.18
Vo 40.0 42.7 3.05 14.0 1.33 0.983 0.18
Vx+IR 10.0 37.7 5.48 6.9 0.5 0.976 0.19
Vx+I 10.0 37.9 4.42 8.6 0.52 0.975 0.16
Vo 10.0 37.9 4.36 8.7 0.28 0.973 0.19
Vx+IR 2.5 25.8 6.62 3.9 0.11 0.943 0.22
Vx+I 2.5 26.1 5.37 4.9 0.11 0.938 0.22
Vo 2.5 26.0 5.27 4.9 0.06 0.938 0.22

Table 5
Statistics for control mesh used for the generation of mesh

of Figure 9

ms mt mo mr Ns Nt No
[%] [%] [%] [%] [%] [%] [%]

Vx+IR 0.6 24.1 48.7 26.6 9.1 30.3 60.6
Vx+I 0.9 32.8 66.3 – 9.1 30.3 60.6
Vo – – 100.0 – – – –
Vx+IR 0.2 1.6 71.6 26.6 5.2 4.2 90.6
Vx+I 0.2 2.1 97.7 – 5.2 4.2 90.6
Vo – – 100.0 – – – –
Vx+IR 0.3 0.4 72.3 27.0 0.8 1.8 97.4
Vx+I 0.4 0.5 99.1 – 0.8 1.8 97.4
Vo – – 100.0 – – – –

Table 5 presents the statistics for control meshes used for generation of meshes,
described in Table 4. The additional mr value shows the amount of calls, which were
recognized obsolete because of the proximity of the subsequently inspected points.
The values Ns, Nt and No show the percentage of control triangles classified for the
appropriate metric interpolation method.
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6. Summary

A visible influence of the selection of the control space on the efficiency of the gen-
eration process can be seen for the used method of the construction of the meshes.
In the example 5.2 the automated introduction of additional control nodes allowed to
nearly double the speed of overall triangulation process, while noting relatively low
cost of the control space construction. For the first two examples (5.1,5.2) this time
of control space creation didn’t exceed 0.05s even in the worst case (for about 1500
control nodes).

For a large initial number of discrete control nodes the procedures of introduction
of additional control nodes and classification of these triangles with respect to the used
metric interpolation method can prove to be rather costly. But even in this case, the
time of control mesh creation is much shorter then the time of the generation of the
resultant mesh. In the worst case time of control space creation was 4 times lower then
the generation time (for 40 000 control nodes, with classification of control triangles).
In this case however, the density of the control space was evidently too large.

More attention should be focused on developing the method of the proper pre-
liminary selection of the control nodes for cases, where the amount of control nodes
with given metric is to numerous. However, such method shouldn’t cause the loss of
information, resulting in the decreasing of the quality of the resultant mesh. On the
other hand it should be fast enough to justify its employment.
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