COMPUTER SCIENCE e VOL. 7 e 2005

JACEK DAJDA*, STANISEAW CISZEWSKI™*

SUPPORT FOR DISTRIBUTED PROGRAMMING
IN EXTREME STYLE

The basic limitation emerging from practising eXtreme Programming methodology is the
constraint of close physical proximity between the members of the collaborating team in-
cluding customer. This became the main idea behind research on XP supporting environment
for geographically distributed teams. This work presents basic assumptions, elaborated ar-
chitecture and selected implementation issues for the system of this type. Deliberations are
supplied with the initial results of the verification of its usability based on the users tests.

Keywords: eXtreme Programming support, Distributed eXtreme Programming, Virtual Pair
Programming, Virtual Teaming

WSPOMAGANIE ZDALNEGO PROGRAMOWANIA
W STYLU EKSTREMALNYM

Podstawowym ograniczeniem, jakie naklada na zespél metodologia programowania eX-
tremalnego, jest wymég bezposredniego kontaktu pomiedzy czlonkami grupy programisty-
cznej w tym klientem. Z tego tez wzgledu podjeto prace nad sSrodowiskiem wspierajacymi ten
styl programowania, przeznaczonym dla grup rozproszonych geograficznie. Praca prezentu-
je podstawowe zalozenia, wypracowana architekture i wybrane aspekty implementacyjne
takiego systemu. Rozwazania uzupelniaja wstepne wyniki weryfikacji jego przydatnosci,
uzyskane w ramach obserwacji grup jego uzytkownikéw.

Stowa kluczowe: wspomaganie programowania ekstremalnego, zdalne programowanie eks-
tremalne, zdalne programowanie w parach, zdalne zespoly

1. Introduction

The eXtreme Programming (XP) provides a set of designing and programming
methodologies which involves a close physical proximity of both team members and
customer.

Nowadays, with an increasing number of projects conducted in a geographical-
ly distributed teams, this requirement can be treated as a considerable limitation.
To overcome it, a new concept called DXP (Distributed XP) has been introduced.
Its main goal is adopting core eXtreme Programming practices and principles into

*PhD Student EATIE, AGH-UST, Krakéw, Poland, jdajda@icslab.agh.edu.pl
**Institute of Computer Science, AGH-UST, Krakéw, Poland

49

50 Jacek Dajda, Stanistaw Ciszewski

the distributed setting. This basically requires a support from a devoted tools and
environments making the communication convenient and efficient regardless on the
distance between cooperating people.

Several attempts have been made in order to fulfill these needs. Work [2] presents
a solution called MILOS ASE which is meant to faciliate team communication, coor-
dination and information routing by a story management system. For pair program-
ming purposes Microsoft NetMeeting and video conferencing have been put into use.
TUKAN environment presented in [3] is another approach to DXP support. It provides
developers with share code repository, synchronous communication and collaboration
as well as version management and distributed integration support. Practicing pair
programming is feasible due to the video-voice link and other visual communication
means (e.g. virtual mouse cursors). Video conferencing approach is a main idea be-
hind DXP devoted environment summarized in [4, 5]. It uses large screens turning
simple room into a virtual office space, similar to these ones described in [6] (” Office
of the Future”) and [7] (?Office of Real Soon Now”). Whiteboard application and a
suitable plug-in for the Eclipse IDE are reported to be under development.

Interesting case has been reported in [8] which describes a development failure of
requirement management tool called Storymanager. The idea behind it was to manage
user stories and tasks by putting them into an electronic format available for all people
involved. The StoryManager was developed as a plug-in to Eclipse framework.

In our case [1], supporting distributed pair programming and continuous inte-
gration was the primary goal. In addition we suggested simple on-line application
synchronizing the work in distributed team. The final environment has been assem-
bled from already existing tools and solutions like CVS and CruiseControl [9]. For
pair programming we developed a devoted plug-in to Jext [10] with voice link and
synchronized text editors.

The role of this article is to present achieved results with an emphasis on their
efficiency in practical usage. Some useful tips for next experiments concerning creat-
ing a DXP support might be provided by describing occurred problems and applied
solutions .

In Section 2 we give an overview on our approach to developed application ac-
companied by a list of requirements that need to be satisfied in the DXP supporting
tool. Section 3 provides a description of the elaborated architecture. Occurred prob-
lems and interesting implementation details are the subject of Section 4. In Section 5
the final effect is presented with a report from the conducted testing experiment. We
conclude with a summary and future work planning.

2. System features

The creation of new environment requires suitable preparation and planning. This
includes specification of system requirements, selecting available resources that will
be used as well as deciding on the most appropriate approach to the development
process. In this section we will overview these issues with a regard to our project [1].

Support for distributed programming in extreme style 51

2.1. General touchstones

As repeating the work which is already done is considered useless and jeopardizing
rapid development, we decided on reusing existing resources. This seemed most prefer-
able approach due to our time limitations and extent of the DXP supporting solution.
This allowed us to accelerate the development process. On the other hand, it put us
at risk of integration and maintenance problems, which are likely to appear when a
variety of different resources is being employed.

Before the particular components of the developed environment were chosen, we
attempted to specify the list of basic touchstones, which helped us finding the most
appropriate solutions for our purpose.

Among them, we emphasized the following issues:

e licence and distribution matters,
e portability and flexibility,

e casiness of use,

e development status.

Since that was an academic project and we could not afford to use any commercial
solutions, open source software became of our choice. The portability of the used tools
seemed obvious as the created system should be available for cooperating developers
working in different environments. As for the development status, it is preferable to
choose resources, which are still being developed rather than concentrate on tools
that are no longer improved.

2.2. User requirements specification

To provide a considerable support for distributed development in extreme style, the
proposed solution should enable the developers to practise the XP core rules, at least
the most fundamental ones. This includes programming in pairs and coordination of
their work as well as continuous integration and testing.

There were considered a base for forming the general system requirements for
the created solution:

e Virtual Coding,

e Communication Links,
e Remote Code Sharing,
e Automated Builds,

e Test support,

e Work coordination.

Virtual Coding assumes providing collaborating developers with a way to mutu-
ally operate on a created code. It involves synchronization of the current document
state and the general view of the used editor. In addition, we decided that suitable
mechanism concerning the change of keyboard ownership state and the possibility of
marking specific code fragments in the remote document should be provided.

52 Jacek Dajda, Stanistaw Ciszewski

Communication Links requires the created system to offer cooperating developers
a voice connection. In case of connection problems, a simple text chat should be
available as well. Moreover, we emphasized that all the connection procedures should
be simplified and automated, not to concern the developers with the configuration
details.

The goal for defining Remote Code Sharing feature was pointing out the need
for a convenient access to the code repository for all the members of the distributed
team. Due to a possibility of parallel code modifications, a versioning support should
be included as well.

Automated Builds cover the call for an automated compilation of the created code
stored in the code repository. The integration build should be performed automatically
after each modification to the source code. Obviously, build results should be easily
accessible for all team members.

Test support requirement has been added in order to provide automated test runs
performed during every build. In order to facilitate test implementation, test coverage
report should be included as well. Clearly, all the results must be available for every
developer.

Finally, we specified Work coordination feature to allow distributed developers
for making pair programming sessions appointments. We agreed that it should supply
users with a list of all scheduled sessions with information on the reserved tasks and
source code fragments. These aspects are undisputable when it comes to synchronizing
work inside a virtual team.

We decided that these six collected aspects cover the general needs of a DXP
supporting solution and meet the most significant expectations towards it.

2.3. Components selection

Having specified requirements concerning the reused solutions and key features of the
developed environment, we performed a selection of the resources and technologies,
which were used to build the final result.

To enable virtual pair programming (which includes Virtual Coding and Com-
munication Links features) we created our own tool, which consisted of:

e Text editor — for this purpose we created a DXP plugin to Jext Editor [10]. It
has become of our choice due to its support for extendable plugins and different
programming languages. In addition, it has been created in Java that answers
the portability and licencing needs. Finally, it offers a simplicity and low system
requirements, which are not to be neglected when a flexible and configurable
environment is created.

e Communication server — we used object oriented communication mechanism of-
fered by Java Remote Method Invocation (RMI) system.

e Voice communicator — it has been created using the Java Media Framework
(JMF) APT and integrated with the Jext DXP plugin.

Support for distributed programming in extreme style 53

As for the selection of text editor, it should be added that we did not take under
consideration IDE kind of environments (such as JCreator or Eclipse) as we found
the light-weight, flexibility and openness to a variety of programming languages of
simple editor more preferable.

To provide the Remote Code Sharing functionality, we could employ CVS or
ClearCase solutions. Since the second one involves purchasing commercial and quite
expensive licence, we decided on the open source solution provided by CVS.

Having all the project code stored in a CVS repository, we extended the en-
vironment with automatic integration and testing, which have been defined as the
Automated Builds and Test support requirements for the created system. To achieve
this we integrated two existing tools:

1) CruiseControl — it offers an automated build process relying on the Ant environ-
ment. Hence, the performed build is enabled to include testing. Build and test
results are available via suitable web page with additional information concerning
time and produced artifacts.

2) JCoverage — it provides test coverage reports which we included as a part of
CruiseControl build results.

For Work coordination purposes we came up with web oriented system as it offers
unconstrained and comfortable access for a variety of environments the cooperating
developers may work in. To achieve it, we employed Java JSP environment for user
interface and PostgreSQL as a database server for storing session and user data.

To sum up, from existing solutions we employed Jext Editor, Cruise Control,
JCoverage and CVS. To provide all lacking functionalities we created: Extreme and
Voice Chat plugins for Jext Editor (RMI, JMF) as well as Session Management System
(JSP, PostgreSQL).

3. Architecture

Since the proposed environment covers several different aspects of the distributed de-
velopment process, it can be approached as a combination of corresponding elements,
which significantly facilitates its understanding as well as further development.

We distinguished the following three separate functionalities:
1) Work coordination,

2) Virtual collaboration,
3) Integration.

3.1. Used symbols

In order to systemize the architecture description, a set of specific symbols need to
be introduced (Fig. 1).

54 Jacek Dajda, Stanistaw Ciszewski

Data repository Data flow _—

Control flow ------------= >
Component

Implementation — o

Process

S Functionality

Fig. 1. Used symbols

3.2. Reference model

The role of Reference Model is to present the distinguished system’s functionalities
and the data flow, which takes place between them. It has been depicted in Figure 2.

Work coordination

Session data

Virtual collaboration

Sources

Integration

Fig. 2. Reference model of the developed environment

3.3. Architecture model

Virtual collaboration (Fig. 3) represents the user environment in the created solution.
It generally consists of the Jext editor supplied with suitable plugins:

e Extreme Plugin,
e Voice Chat Plugin,
e CVS Plugin.

They are used to access CVS repository with shared code and enable user com-
munication using either direct connection (voice data) or Communication Manager
messaging server (text chat and session data).

Work coordination (Fig. 4) is responsible for both the communication and control
issues regarding the distributed pair programming session.

Support for distributed programming in extreme style 55

Voice
communication

Source code edition

Virtual _ VoiceChat __ Voice VoiceChat
programming ® Plugin Plugin N
environment N

L Extreme Extreme \

Cvs Plugin ; Plugin T

repository access m : © s
cvs & ' Hm cvs /
Access to ™ prgin el 2 Plugin ¥
web published 9 ¢ £ g
build results @ : u
Web : Web
Browser Browser

f

Communication
manager

lSources

Build
results

Fig. 3. Virtual collaboration functionality

Session and user data repository

Session and user data Communication manager control Communication menagement
Session and user data management Communication channels
v LS v [
Session menagement interface Communication manager
I

T A
I
T
I

| |

Web browser Extreme Plugin

Fig. 4. Work coordination functionality

56 Jacek Dajda, Stanistaw Ciszewski

It consists of a web oriented Session Management Interface (SMI) system and
RMI based Communication Manager (called Communication Server as well), which
provides a set of functionalities, among which the role of a messaging server between
the session participants is of the highest importance.

The Integration functionality (Fig. 5) allows for passing developed code from
CVS repository to CruiseControl and JCoverage tools to perform automated builds
and integration testing. The results are available through a web page. Therefore, it
can be stated that integration domain is accessible from the user environment on two
possible ways:

1) CVS repository,
2) web repository of build and test results.

CVS plugin Web browser

™. e

Build and test
results
Build and test

execution results

Code version
management

Source code
repository

Cruise Control

Test coverage
raports generation

Computation
and test execution

JCoverage

Fig. 5. Integration functionality

4. Implementation overview

With the beginning of system implementation the RMI technology has been chosen
as a base communication medium between collaborating text editors. Taking into
consideration the ease of sending message objects as well as the ease of communication
channel implementation it seemed to be the best solution. However, after the first
prototype of the system has been implemented, it turned out that direct RMI calls
are not efficient enough if the network connection is quite poor. The application
tended to block for the time the message object has been send or received, what was
really undesirable. Moreover, as the editor during source code modification generates
a number of message objects, the network bandwidth required to comfortable work
was really high.

To answer the problem each client part of the communication channel has been
equipped with two threads dedicated to send and receive message objects. This en-

Support for distributed programming in extreme style 57

sures that the information is sent/received as quickly as possible, without blocking
the application for the time the actual transmission is performed. Moreover, if only
possible, the message objects are assembled into clusters and sent/received within one
RMI call. This results in decreasing the required network capacity and much more
comfortable work with the editor.

Another interesting issue was establishing bidirectional voice communication
channel, which relied on RTP data transmission. In this case, each side needed to
know the IP address as well as the UDP port number of the cooperating editor. The
responsibility for providing required information could not be delegated to the editor
user due to the inconvenience of this solution. On the other hand, JMF required to
use different ports for data input and output. Moreover, it was not possible to fix
the port numbers as their availability on different machines could not be guaranteed.
Therefore, an automatic support was highly needed.

Opening xp plugin window Send button for the text chat
\ \
I e a\if R o
File Edt Search Tools ins | Jext
XP Plugin
= »)
Log E = & & fabunciongio w2 I8 & 3 Fing ‘ ava -
ﬁ Hyper Typer L3
N Buid || Documsrtation | | Keystroke Recorder »
[x12:nn] Plugin stary Cvs Plugin L
Connection [12:00] Users in ses ExiremePlugin >[ExtremePlugin Window
panel - JuliusE192.168. 3 Fingal C+F3
[12:00] Julius: hell Find In Files Window
Funny Brackets ! Cre Crb | Send
P e— -
Froject | Mnsert | Findal || Projectwiaster | £ | » |,/ ElUntitled | B AVRecsiver java |
Session)l Session Manager: H VoiceChatPlugin;
operat\ons . ,— 1
ot U MocalhostSessionManager . e
_— Session A Java.net.T;
| Dlscornect | : saver. uecta.

avax.media.rep. v
\E=ssien operations: 3 : P
javax.medis. rep. event, ¥;

Add document 4 javax.media.rtp.rrop.*;
= ' javax.media.protocol. #;
/ javax.media.protocol.Datafource;
g javax.media. fornat. AudioFormar;
(E=CAS : javax.media. fornat. VideoFornat;
javex.media. Format;
javex.media. foruat. ForuatChangeEvent;

XP Plugin javax.media. control.Buffercontrol;
Panel Listening panek i
Voice | Lsen |
Chat r#4
Status: none 4
panel # AVReceived to recelve RIP transmission wsing the RTPConns
Transmitting panek ‘|
‘jpublic class AVReceiver implements ReceiveStreamListener, Se
Transmit Bl
A WVector sessions = null:
Status: none: 4 Vector rrpManagers = null: |
| A =]
our writing time: 00:08:44 (93%) HIMmTSalK! T Gl /]
1:25 - 1/222 - [DOSTND% /

\\ The user writing time Documents’ pane /

Fig. 6. XP Plugin for Jext Editor

The suggested solution (Fig. 6) consisted of automated port assignment procedure
as well as protocol, which was used to exchange the information between two editor
entities.

58 Jacek Dajda, Stanistaw Ciszewski

The main goal was to hide all negotiation details for the working user. As a
result, the user was only supposed to press suitable button in order to establish voice
connection.

Integration of JCoverage and Cruise Control tools (Fig. 7) can be approached as
one of the implementation challenges as well. The intention was to provide automated
source code compilation, tests execution as well as generation of coverage reports for
performed test cases. The main hurdle was to achieve the execution of JCoverage tasks
from the Ant build file driven by Cruise Control as well as to adjust the appearance of
the JCoverage to the build results generated by Cruise Control. As a solution to these
issues a set of configuration files was prepared. It included Cruise Control build loop
configuration file and Ant build script, which provided the way to initialize test cover-
age report from the build process. Unfortunately, in order to spawn JCoverage tasks
the full path to its libraries had to be hardcoded in the ant build configuration file.

% -~ jcoverage report - Mozilla
. File Edit View Go Bookmarks Tools Window Help

P =
OQ O O Q ‘% http://build iisg.agh.edu.pl:8080/cruisecontrol/artifacts/tem plate/2004062822 I IQ Search l Cjo

. 4% Home [JBookmarks % The Mozilla Org... % Latest Builds

| summary

Coverage Report

[Owml [s [Tines | e | ndicalor | branch | indicator |
DEE N

0 G e 1 11 8l

Set view:

Packages

[packagename | Ties | Tnes | %dine | ndicator | Swbmnch | indicator]
11 45%

default 1 = 80% I—
All Java™ files

W [s [me | Tndkator | Fbmnch | indicaior |
45%; I 8 |

MyMath 11

th

Fig. 7. JCoverage integrated with Cruise Control

5. System presentation

To validate our assumptions regarding the set of implemented functionalities and
user-friendliness of interface design, we called for the support of our fellow students.
Due to the continuous development of the proposed environment, it was not possible
to verify its all included aspects at the same time.

Support for distributed programming in extreme style 59

Therefore, the presentation was to be divided into two following stages:

1) Extreme Experiment (EE),
2) Integration test bed.

The goal of EE was to inspect the efficiency, reliability and convenience of the
provided distributed pair programming support. With a regard to the second stage, it
included code management, integration and testing issues, which built the Integration
domain of the given solution.

The invitation to EE was answered by 10 students divided into 5 independently
working pairs. Each one received identical task as well as necessary support. The task
required information flow between cooperating developers and was successfully com-
pleted by all the groups, which proved the usability of provided solution. Generally,
judging by the collected comments (see Tab. 1), it can be stated that the presented
tool and organized experiment have been approached positively.

Table 1
Users’ comments and opinions

Questi Answers
uestion Yos T No
Did your team manage to accomplish the task? 10

Did the task realization required permanent communica- | 10 0

tion with your partner?

Did the tested tool disturb task realization in any way? 1 9

Do you think that presented idea of Distributed Team 9 1
Programming is worth to be further developed?

Would you like to use such tool in your professional work? 8 2

The received feedback allowed us for the evaluation of certain aspects of the
presented solution which we considered most significant and valuable. The average
marks for every issue are shown in Table. 2.

Table 2
Evaluation of the presented plugin on the 10-point scale

Aspect Average rate
Importance of voice communication 8.9
Usability of tested tool according to XP needs 7.66
GUI intuitiveness 7.4
Comfort of the system utilization 7.0
Visual aspect of tested tool 7.1
Keyboard passing method 6.7

60 Jacek Dajda, Stanistaw Ciszewski

Finally, we received a list of suggestions on possible enhancements of the pre-
sented plugin:

e Shortcuts — for faster accessing the editor’s functionalities.

e Syntax helper — including auto-completion feature, however this was rather a
matter of reused editor, not the provided plug-in.

e Automatic keyboard requesting when keyboard pressed — meant for keyboard
changing more intuitive and comfortable.

e Bell when keyboard has been lost — a sound indicating the change of keyboard
ownership.

e Automatic CRC cards generation — this would facilitate the creation of CRC
cards based on the source code.

The second stage of the presentation included verification of the elaborated sup-
port for the code maintenance, integration and testing practices of the DXP model.
To achieve it, we prepared a devoted environment, which consisted of Cruise Control,
CVS and JCoverage solutions. The assigned task did not specify any concrete goals
the invited developers were supposed to achieve. Generally, we asked them to famil-
iarize with the configured environment and its utilization, by finalizing a default test
package we created for this very occasion.

As a result, a number of useful comments regarding the tested integration en-
vironment were produced. The presented combination of CVS, Cruise Control and
JCoverage tools occurred suitable for remote automatic builds and tests. A few short-
coming were reported:

e long period between the complication runs,
e unlimited access to all CVS projects,
e Java oriented environment.

6. Conclusion

The principal goal of the carried work was delivering an environment for virtual
collaboration of geographically distributed developers. In addition, we attempted to
explore the range of available solutions that may be considered a support for the
distributed development. Finally, we aimed at verifying the accepted assumptions and
producing constitutive suggestions concerning possible enhancements of the followed
approach.

The scope of the final solution covered four main XP aspects: Pair Programming,
Continuous Integration, Testing and Work Coordination. We managed to validate
the provided Pair Programming support during the organized experiment as well
as initialize a test installation for automated tests and builds. The achieved effect
confirms the feasibility of virtual collaboration in XP style as well as manifests the
potential and capabilities of the new software development discipline, which DXP is
gradually becoming.

Support for distributed programming in extreme style 61

Future work should include further investigation of the key functionalities of
DXP supporting environment as well as the improvement of the current ideas and
provided solutions. This should be achieved by applying a variety of experiments and
test installations, which is a natural step towards validation of the theoretical work.

References

[1] Dajda J., Sztuka T.: Support for distributed programming in eXtreme style. Mas-
ter thesis, Cracow, 2004

[2] Maurer F., Martel S.: Process Support for Distributed Extreme Programming
Teams. University of Calgary, Department of Computer Science

[3] Succi G., Marchesi M.: eXtreme Programming Examined. Addison-Wesley, 2001

[4] Stotts D., Smith J., Williams L.: eXtreme Hypervideo Support for Distributed
Ezxtreme Programming. Dept of Computer Science, Univ. of North Carolina at
Chapel Hill, Technical Report TR02-009

[5] Stotts D., Williams L.: A Video-enhanced Environment for Distributed Extreme
Programming. Dept. of Computer Science at Univ. of North Carolina at Chapel
Hill & Dept. of Computer Science at North Carolina State University, 2002

[6] Fuchs H.: The Office of the Future. http://www.cs.unc.edu/ raskar/0ffice/

[7] Bishop G., Welch G.: Working in the Office of 'Real Soon Now’. IEEE Computer
Graphics and Applications, July/August 2000, pp. 76-78

[8] Kaariainen J., Koskela J., Abrahamsson P., Takalo J.: Improving Requirements
Management in Extreme Programming with Tool Support — an Improvement At-
tempt that Failed. Copyright 2004 IEEE

[9] Cruise Control Home Page, http://cruisecontrol.sourceforge.net/

[10] Jext Editor Home Page, http: //www.jext.org

