
M. Kozlovszky
K. Karoczkai
I. Marton
A. Balasko
A. Marosi
P. Kacsuk

ENABLING GENERIC DISTRIBUTED
COMPUTING INFRASTRUCTURE
COMPATIBILITY FOR WORKFLOW
MANAGEMENT SYSTEMS

Abstract Solving workflow management system’s Distributed Computing Infrastructure

(DCI) incompatibility and their workflow interoperability issues are very chal-

lenging and complex tasks. Workflow management systems (and therefore their

workflows, workflow developers and also their end-users) are bounded tightly to

some limited number of supported DCIs, and efforts required to allow additional

DCI support. In this paper we are specifying a concept how to enable generic

DCI compatibility for grid workflow management systems (such as ASKALON,

MOTEUR, gUSE/WS-PGRADE, etc.) on job and indirectly on workflow level.

To enable DCI compatibility among the different workflow management sys-

tems we have developed the DCI Bridge software solution. In this paper we

will describe its internal architecture, provide usage scenarios to show how the

developed service resolve the DCI interoperability issues between various mid-

dleware types. The generic DCI Bridge service enables the execution of jobs

onto the existing major DCI platforms (such as Service Grids (Globus Toolkit

2 and 4, gLite, ARC, UNICORE), Desktop Grids, Web services, or even cloud

based DCIs).

Keywords workflow management system, infrastructure interoperability, Distributed

Computing Infrastructure, DCI, DCI Bridge

2012/09/23; 18:08 str. 1/18

Computer Science • 13 (3) 2012 http://dx.doi.org/10.7494/csci.2012.13.3.61

61

1. Introduction

For the sake of clarity we would like to provide here firstly our truly simplified workflow

and workflow management system definitions: A workflow is composed by connect-

ing multiple tasks according to their dependencies. Workflows are frequently used

by research communities. Workflow management systems that control and supervise

the execution of workflows are used for a wide range of scientific applications. We

can categorized these solutions from many aspects, some are client based (e.g.: Tav-

erna workbench [7], UNICORE Rich Client [3]), others are centralized (P-GRADE,

WS-PGRADE/gUSE). Existing workflow management systems are also different in

middleware support, workflow engines and workflow description languages. They in-

terpret, execute and manage workflows differently since they have been defined by

different scientific or software developer communities. In most cases workflow man-

agement systems (and therefore their workflows) are bounded tightly to some small

number of specific Distributed Computing Infrastructure (DCIs), and efforts required

to allow additional DCI support. As a result, solving workflow management system’s

DCI incompatibility, or their interoperability [11] issues are very challenging and com-

plex tasks. In this paper we are specifying a generic concept how to enable generic

DCI compatibility, which is proved to be feasible for many major grid workflow man-

agement systems (such as ASKALON [4], MOTEUR [6], gUSE/WS-PGRADE [8]) on

job (and indirectly on workflow) level. To enable DCI compatibility among the differ-

ent workflow management systems we have developed the DCI Bridge, which become

one of the main components of the so called fine-grained interoperability approach

(FGI) developed by the SHIWA (SHaring Interoperable Workflows for large-scale sci-

entific simulations on Available DCIs) project [2]. In this paper we will target the

generic DCI Bridge service component and describe its internal architecture, provide

usage scenarios and show how the DCI Bridge can resolve the DCI interoperability

issues between various middleware types (e.g. between gLite, ARC and UNICORE).

2. Motivation and state of the art

2.1. The scientific problem

Heterogeneous infrastructure is used to solve computational or data intensive prob-

lems. This heterogeneity of such systems is coming from different sources such as dif-

ferent hardware infrastructure size or different access methods. Middleware solutions

are able to unify heterogeneous infrastructure in an effective way, however the existing

different middleware solutions are not compatible with each other. These different

middleware solutions are building up non-compatible, island like infrastructures and

locking in (indirectly) all the workflow management systems, the workflow developers,

and the end-users. By Farkas Z. et al. “Generic Grid-Grid Bridge” (3G Bridge) [5]

was introduced to solve P-GRADE portal’s compatibility issues between the differ-

ent Grid infrastructures; between Service Grids (SG) and Desktop Grids (DG). The

P-GRADE Portal solution supports parameter sweep job submission to Globus and

2012/09/23; 18:08 str. 2/18

62 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

gLite based Service Grids only. However, for compute-intensive parameter sweep jobs

the usage of Desktop Grids are more ideal than Service Grids since they are less ex-

pensive. In order to forward parameter sweep jobs to Desktop Grids the 3G Bridge

service was developed in the frame of the EDGeS project. Later on this solution was

further developed to support some Cloud infrastructures as well [9]. In parallel we

have tried another way to resolve generic distributed computing infrastructure (DCI)

interoperability issues. This developed solution is called DCI Bridge. At first sight 3G

Bridge and DCI Bridge seems to provide similar functionalities, however the major

difference between to two solutions are the following:

• they are using different internal architecture (DCI Bridge is Java based, and 3G

Bridge is not),

• their middleware support is different: 3G Bridge is focusing on Grid infrastruc-

tures, DCI Bridge is capable to utilize Grids additionally also ARC and UNI-

CORE, clusters and clouds,

• their load balancing capabilities are different: 3G Bridge is monolithic, DCI

Bridge is distributed, multilayered, and service oriented. For more detailed com-

parison of the solutions one can refer to [9] [5].

2.2. FGI vs. CGI

The SHIWA project [2] has defined two different approaches to provide workflow in-

teroperability among the different workflow management systems and workflow lan-

guages. The first solution called Coarse-Grained Interoperability /CGI/. It allows

arbitrary workflow systems to invoke another workflow system as a distributed ser-

vice and treats the foreign workflow as an embedded black-box type job. The second

solution called Fine-Grained Interoperability (FGI) defines a community-driven work-

flow representation (IWIR-Interoperable Workflow Intermediate Representation [12])

that allows a workflow created in one system, to be converted or translated to the

representation understand by other workflow engines. At enactment time, a workflow

engine can translate the common representation into its own native format for the

purposes of execution. FGI supports the distributed modification or editing of third

party internal workflow components as well. Other important key elements of the

fine-grain interoperability approach are the following services: DCI Bridge, Proxy

Manager, Repository, Translator service (shown in Fig. 1.). Actually the fine-grained

interoperability solution – in parallel with DCI interoperability – focuses more on the

transformation of workflow representations in order to achieve workflows migration

from one system to another. In this paper we will skip the workflow transformation

part and focus only on DCI interoperability.

2.3. gUSE and WS-PGRADE

The Grid User Support Environment (gUSE) is basically a virtualization environ-

ment providing large set of high-level DCI services (including workflow manager,

storage, broker, etc.) by which interoperation among classical service and desktop

2012/09/23; 18:08 str. 3/18

Enabling generic distributed computing infrastructure (...) 63

Figure 1. Components of the Fine Grain Interoperability (FGI).

grids, clouds and clusters, unique web services and user communities can be achieved

in a scalable way. gUSE has a graphical user interface, which is called WS-PGRADE.

From the v3.3 release of gUSE the WS-PGRADE portal is part of the enterprise

open source Liferay [1] portal solution. gUSE is implemented as a set of Web services

that bind together in flexible ways on demand to deliver user services and provide

access to various Distributed Computing Infrastructure (DCI). WS-PGRADE hides

the communication protocols and sequences behind JSR286 compliant (Liferay com-

patible) portlets and uses the client APIs of gUSE services to turn user requests into

sequences of gUSE specific Web service calls. End users can access WS-PGRADE

via Web browsers. WS-PGRADE/gUSE is used worldwide by many scientific com-

munities, and numerous eScience gateways based on gUSE. In our performance test

environment we have used the WS-PGRADE/gUSE workflow management system to

create workflows and submit the jobs to the DCI Bridge.

3. The DCI Bridge – the solution

Originally gUSE had an internal core service to handle the different DCIs, at beginning

only gLite and GT2 was supported. The DCI Bridge was derived from this core

service component to support SHIWA’s FGI solution, however later on it turned

2012/09/23; 18:08 str. 4/18

64 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

out that it is useful for all other OGSA Basic Execution Service 1.0 (BES) enabled

workflow management systems to solve their DCI interoperability issues. The DCI

Bridge is a web service based application, which provides standard access to various

distributed computing infrastructure (DCIs) such as: grids, desktop grids, clusters,

clouds and service based computational resources (it connects through its DCI plug-

ins to the external DCI resources). The main advantage of using the DCI Bridge

as web application component of workflow management systems is, that it enables

workflow management systems to access various DCIs using the same well defined

communication interface (shown in Fig. 2.). When a user submits a workflow, its job

components can be submitted transparently into the various DCI systems using the

OGSA Basic Execution Service 1.0 (BES) interface. As a result, the access protocol

and all the technical details of the various DCI systems are totally hidden behind the

BES interface. The standardized job description language of BES is JSDL.

Additionally, DCI Bridge grants access to a MetaBroker service called GMBS [10].

This service acts as a broker among different types of DCI: upon user request selects an

adequate DCI (and depending on the DCI, an execution resource as well) for executing

the user’s job. Just like the DCI Bridge, GMBS accepts JSDL job descriptions, and

makes use of the DCI Bridge service to actually run the job on the selected DCI.

Service and
D k G idDesktop Grids

vi
ce

gUSEG
R

A
D

E

Clouds

tio
n

S
er

v

gUSE

W
S

-P
G

DCI Bridge

Clustersic
 E

xe
cu

(B
E

S
)

G i kfl

Clusters

G
S

A
B

as

Generic workflow
management systems Generic (web)

services

O
G

Generic workflow
management systemsmanagement systems

Figure 2. Schematic overview of the DCI Bridge and its external communication channels.

3.1. Internal architecture and main components of the DCI Bridge

DCI Bridge is based on four main components: the Resource Registry, the Application

Management, the Runtime System, and the Monitor component. All components of

the DCI Bridge can run within a generic web container (such as Tomcat or Glassfish).

• Resource registry The Resource Registry subsystem provides an online con-

figuration interface to configure the accessible DCI. Also it provides information

2012/09/23; 18:08 str. 5/18

Enabling generic distributed computing infrastructure (...) 65

about the configured resources to other external software components. Main

components of this subsystem are:

– Online configuration interface

– ResourceConfiguration service

Wide range of different middleware types are supported by the DCI Bridge

(shown in Fig. 3.). The number of supported DCI is growing constantly. So

far the following DCIs are supported: service grids (gLite, GT2, GT4, ARC,

UNICORE), clusters (PBS, LSF), web services, BOINC, Google App Engine,

GEMLCA, local resources.

• GLite
• Globus Toolkit-2
• Globus Toolkit-4

• GBAC
DCI Bridge

• Unicore
• ARC

• BOINC

• GEMLCAGEMLCA

• Google App Engine
• LSF
• PBS

• Local resources

PBS

S i b d Local resources• Service based resources

Figure 3. Supported DCIs by the DCI Bridge.

The authentication mechanism of the common portal container is used by all

online graphical user interfaces, thus also the configuration interface is accessible

by the same user database. To visualize the available resources, the Resource-

Configuration service provides both HTTP and HTTPS communication channels

for the users. This service gives details on the configuration of different grid mid-

dleware supported by the DCI Bridge service. This information is propagated by

the DCI Bridge web application also back to the workflow management system’s

user interface (WS-PGRADE), and displayed in the Resource portlet. Fig. 4.

shows a screenshot of the Resource portlet displaying information about a DCI

Bridge service connected to a number of DCIs.

• Application management The Application Management subsystem is the im-

plementation of the BES-Management Port-type from the 5th volume of the

OGSA Basic Execution Service 1.0 specification which makes possible to super-

vise the software based access of the BES Factory service. Main components of

this subsystem are:

– BESManagement + online web interface

2012/09/23; 18:08 str. 6/18

66 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

Figure 4. GUI of the Resource Configuration service.

• Monitor The Monitor subsystem handles and visualizes the logs and messages

of the DCI Bridge, the plug-ins and the running jobs. Main components of this

subsystem are:

– Application monitor + online interface

– Plug-in monitor + online interface

– Job monitor + online interface

• Runtime system The Runtime System does the actual job running. The sub-

system can be called with a service made by OGF which implements the BES

WSDL and it makes the operations defined by the OGSA Basic Execution Service

1.0 specification on different grid/cloud/service based middleware. The separate

running systems can be handled with plug-ins and their numbers can be increased

without any restriction. Main components of this subsystem are:

– BESFactoryService service

– Job registry

– Proxy manager

– Executor layer handler

– Input queue

– Meta Broker client

– DCI Plug-in manager /Middleware plug-in and queue handler/

– Output queue

– Status manager

The overview of the Runtime System is shown in Fig. 5.

2012/09/23; 18:08 str. 7/18

Enabling generic distributed computing infrastructure (...) 67

SSH, x509,...
Authentication/Authorisation

Inputs & executables

MyProxy

WFI

JSDL

BES I QJob
gLite

JobWFI BES Input QueueJob
refs.Submission

controll

Job
refs. GT2W

gUSE
JSDL Plug-in

Manager
Job object
references

GT4

W
S-PG

gUSE

Job UploadJob id Job

G
R

A
D

E

RegistryStatus
Upload

Manager
Job_id

+
status

Job
refs.

E

DCI BridgeOutputs

Figure 5. Internal architecture of the DCI Bridge.

The Runtime System accepts standardized JSDL job description documents

which are based on well-defined XML scheme, and contains information about the

job inputs, binaries, runtime settings and output locations. The core JSDL itself is

not powerful enough to fit all needs, but fortunately it has a number of extensions.

For example, DCI Bridge makes use of the JSDL-POSIX extension. Beside the JSDL-

POSIX extension, DCI Bridge makes use of two legacy extensions: one for defining

execution resources, and one for proxy service and callback service access. The exe-

cution resource extension is needed both for the core DCI Bridge in order to define

specific execution resource needs and for the Metabroker service. The proxy service

extension is needed for jobs targeted to DCIs, which rely on X.509 proxy certificates

for job submission. The callback service extension is needed if status change callback

functionality is needed: the DCI Bridge will initiate a call to the service specified in

the extension upon every job status change.

User credential handing of DCI Bridge is based on content-based approach in-

stead of a channel-based ones. This means that user credentials (proxies or SAML

assertions) are not handled by the communication channel, but are rather specified

in the JSDL extension mentioned earlier. This approach allows DCI Bridge to im-

plement varied DCI-dependent credential handling options within the different DCI

plug-ins instead of relying on the capabilities of the servlet container running the

DCI Bridge service. Of course it is still possible to run DCI Bridge as a secured

2012/09/23; 18:08 str. 8/18

68 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

service (for example as a service accessible through authenticated HTTP, HTTPS or

even HTTPG), but credentials used for establishing connection to the service are not

passed to the destination plug-in, it solely makes use of the credentials described in

the JSDL extension.

Even that different DCIs are using different middleware and access solutions and

they are not compatible with each other they are providing similar services for the

users. To overcome the incompatibility issue, the DCI Plug-in Manager (a plug-in

based framework with a common interface for all the different DCIs) was defined and

implemented shown in Fig. 6.

Thread #1 of #1. DCI
jobs

DCI Plug-in
manager #1. DCIThread #m of #1. DCI

Thread #1 of #n. DCI

Thread #m of #n. DCI

#n. DCI

Figure 6. The multi-threaded DCI Plug-in manager’s internal architecture.

Every DCI plug-in is running in a separate thread, however to increase the utiliza-

tion performance of the DCI multiple plug-in threads can be launched and assigned

to the same DCI entity, these threads are feeding the same DCI at the same time in

a concurrent manner. DCI plug-in is a JAVA object internally, which needs to contain

minimum the following functionalities:

• service-like operation, can be controlled with start/stop as a service (it is a stand-

alone thread),

• optionally can contain a reference to another (external) object/resource in a form

of WSDL,

• it has a plug-in-queue,

• it has a proxy type (e.g.: X509 GSI, X509 RFC, SAML, etc.) with reference to

its implementation java class.

3.2. Job submission through the DCI Bridge

To show the DCI Bridge in operation, we are assuming, that the end user can submit

a workflow through the WS-PGRADE GUI. Internally in the gUSE the workflow

2012/09/23; 18:08 str. 9/18

Enabling generic distributed computing infrastructure (...) 69

nodes are parsed and submitted as individual jobs one-by-one to the DCI Bridge. Let’s

assume the user configured the workflow node successfully to run on local resource.

• External Job submission

– The WFI (inside gUSE) initiate the job submission.

– In the WFI’s submit pool (RamSubmitPoolImpl) the job is waiting, and

when processed, according to its job configuration a job description XML

file (JSDL based) is generated.

– Job submission (from WFI to BES Factory service).

– The WFI calls the BES Factory service of the DCI Bridge with the generated

XML (create Activity).

External tasks DCI Bridge - Internal tasks

External
Job

submission

Job
registration

Prepare
job for

submission

Internal
job

submission

Collect
results

from DCI

Forward results
to Feedback

to WFI
Internal
Clean Up

Feedback to
end user caller/Uploadto WFI Clean Upend user

Figure 7. DCI Bridge’s internal operation phases.

• Job registration

– The BES Factory service receives the job and sends it into the Job Registry

as object for further storage.

– The Job Registry creates references to the job object and provides back the

reference and a job ID to the BES Factory service.

• Prepare job for submission

– BES Factory service includes the job reference into the Input Queue.

– BES Factory service sends back the job ID and some status information to

the WFI.

– The job references in the Input Queue are waiting for their processing.

When the job processing started an internal job directory is created. The

executable(s), and all the inputs of the job are downloaded from the gUSE

storage into the newly created directory. All the job directories are stored lo-

2012/09/23; 18:08 str. 10/18

70 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

cally under the same temporally directory path. The used name convention

is simple: the full (unique) job ID is the directory name.

– In parallel to the download process:

∗ Metabroker service can be utilized (if any DCI decision is required).

This is an optional step in the procedure.

∗ Certificate assignment (using proxy certificates), and all other authen-

tication/authorization related tasks are taking place during this step.

• Internal job submission

– If the job is ready to run, the job ID is forwarded to the DCI Plug-in

Manager.

– The DCI Plug-in Manager is using its own queue to store the pending job

IDs. Each DCI can be utilized by multiple DCI plug-in threads. Each

thread is trying to process the assigned queues and submit jobs into the

appropriate DCI. In our example the job is using local resources. In local

submission the submit returns and status query starts automatically. The

job can finish with successful/failed status.

• Collect results from DCI

– When the job finished, outputs are downloaded from grid (in local submis-

sion, the output is just copied between different directories)

• Forward Result to caller/Upload

– The job reference is transferred into the queue of the Upload Manager. The

job references in the Output Queue are waiting for their processing. When

the job processing started the job outputs are uploaded to the storage.

• Feedback to WFI

– The job status (e.g.: finished/failed) is forwarded back through the Job

Registry to the WFI.

• Internal Clean Up

– The remains of the job processing (directory, generated files, outputs) is

cleaned up, the temporally job directory and the job references in the Job

Registry are deleted.

4. Performance measurements

We have evaluated the performance of the most important DCI Bridge component:

the BES Factory. Our test environment consists of a test application written in JAVA

and the DCI Bridge itself. The test application is able to send thousands of jobs in high

frequency to the BES Factory service to measure its job handling capacity. During

our submission performance test we have sent 9x1000 configured single job with pre-

defined amount of inputs into the DCI Bridge. According to our assumptions the

amount of input influences the performance parameter, because every input should

2012/09/23; 18:08 str. 11/18

Enabling generic distributed computing infrastructure (...) 71

be retrieved by the Input Queue before submitting the job into the targeted DCI. We

have launched our tests with zero, 10, 20, 30, 40, 50, 100, 500 and 1000 inputs. All

the other job and input parameters have been similarly configured. After each job

submissions the BES Factory tries to return back immediately and parallel behind

the scenes it forwards the job to the appropriate DCI plug-in. The starting phase

of the DCI Bridge services (due to the network topology and network services like

DNS) requires longer processing time, so we have manually eliminated this transient

period from our performance results. As it can be seen in Fig. 8. (where the x axis is

not linear), BESFactory service scales smoothly, thus the increased number of inputs

cause only about linear processing time increase.

Figure 8. BESFactory service performance test results.

5. DCI Bridge usage scenarios

5.1. User’s default motivations

Within Europe large number of DCI middlewares are existing in parallel (just to

name a few examples in service Grids: gLite, ARC, UNICORE, GT2, GT4, GT5).

Interoperability is playing crucial role in Big Data challenges, and non-interoperable

DCIs (with their proprietary job submission, authentication, etc.) are preventing

the seamless mobility of the users/researchers and the reusability of their scientific

workflows both directly and indirectly. Indirectly preventing, because the workflow

management systems are usually supporting only limited number of DCIs (1 or 2)

2012/09/23; 18:08 str. 12/18

72 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

and workflow management systems are not interoperable with each other at all. The

SHIWA project has been identified different use cases where DCI interoperability acts

as important factor (shown in Table. 1).

Beside the native usage scenario when the workflow system (such as WS-

PGRADE/gUSE) is connected directly to a DCI Bridge, which is connected to all

the targeted DCIs, we can identify other usage scenarios as well.

Table 1

User motivations to resolve DCI interoperability issues.

Use case Description Added value
Workflow porting Importing/exporting an Reuse of workflows ing g g

existing workflow from/to
a foreign environment

another virtual research
community.

Multi DCi execution Generation of Reuse of workflowsMulti-DCi execution Generation of
Metaworkflows using
different DCIs

Reuse of workflows.
Scale up to larger
infrastructure (Data
challenge).

Multi-enactor/multi-DCI
execution

Generation of
Metaworkflows using

Reuse of workflows.
Scale up to largerexecution Metaworkflows using

different DCIs and/or
workflow enactors

Scale up to larger
infrastructure (Data
challenge).
Combine differentCombine different
workflows as embedded
jobs into a
superworkflow.

5.2. DCI Bridge in a multi-grid multi-node installation scenario

DCI Bridge is capable to be deployed on multiple user interface nodes in order to

enable access to different grid systems. Single workflow management system (WS-

PGRADE/gUSE) installation can make use of a number of DCI Bridge services in

the same time parallel and transparently (shown in Fig. 9.). In such case a “master”

DCI Bridge is connected to the WS-PGRADE/gUSE installation. The master DCI

Bridge is using its own BES Factory client to connect to the “slave” DCI Bridges.

The different DCI Bridge deployments are running on different DCI user interface

machines connected to the different DCIs. In such a setup, users of a WS-PGRADE

installation may make use of very different DCIs through a unified user interface.

This multi-node installation scenario can be useful if we would like to relieve the load

of the DCI Bridge server, or the DCI UIs are incompatible with each other. In such

case the “master” DCI Bridge is the single distribution point for all the submitted

jobs. It assigns automatically a unique job ID to each job (this ID remains intact

and unique till the job exists), and forwards further to the “slave” DCI Bridges. The

2012/09/23; 18:08 str. 13/18

Enabling generic distributed computing infrastructure (...) 73

job status information and all the job outputs are not handled by the “master” DCI

Bridge, this information directly transferred back to the original submitter (generic

workflow manager system, WS-PGRADE/gUSE, etc.).

Service and
Desktop Grids

io
n

Se
rv

ic
e

gLite, GT2

e

DCI Bridge

G
S

A
 B

as
ic

 E
xe

cu
t

(B
E

S
)

“master” DCI Bridge

D
E

Clouds

tio
n

S
er

vi
ce O
G

C
lie

nt “slave” DCI Bridge

gUSE

S
-P

G
R

A
D

DCI Bridge

as
ic

 E
xe

cu
t

(B
E

S
)

DCI Bridge

E
xe

cu
tio

n
Se

rv
ic

e
B

E
S

)

S
 F

ac
to

ry

Service Grid
GT4

W
S

Clusters

O
G

S
A

Ba

O
G

S
A

 B
as

ic
 E (B

B
E

S

Clusters
ic

e

Service and

“slave” DCI Bridge

“slave” DCI Bridge

DCI Bridge

c
E

xe
cu

tio
n

S
er

vi
(B

E
S

)

Service and
Desktop Grids

Generic (web)
servicesO
G

S
A

 B
as

ic

Figure 9. Multi-node installation of the DCI Bridge service.

5.3. DCI Bridge in a load-balancing scenario

In this scenario the core gUSE services are aware of one DCI Bridge installation.

Although this DCI Bridge service is not connected to any DCI, it may forward the

jobs it receives to other DCI Bridge deployments as they are using the same submission

interface and job description language. This way the central DCI Bridge service may

distribute the incoming jobs among the other services it is aware of. After the jobs are

distributed, they have the possibility to report job statuses back to the central gUSE

services (to be specific, the WFI) using the callback JSDL extension we have described

earlier. DCI Bridge load balancing can be realized mainly in two different ways

(external and internal Load Balancing Server /LBS/). Some of the server solutions

(such as GlassFish) has inbuilt LBS service, which can provide external load balancing

for the DCI Bridge service. Because this solution is not able to support fully the job

submission (the job abort cannot initiated) we are implementing an internal LBS

inside the DCI Bridge.

2012/09/23; 18:08 str. 14/18

74 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

5.4. DCI Bridge as a cloud-deployed service

In this scenario one central DCI Bridge installation is forwarding its requests to some

load-balancing service. The task of this load-balancing service is to forward incoming

requests to a DCI Bridge installation deployed within the cloud. Using this setup,

a big number of cloud resources can be exposed. The big advantage of this approach

is, that constant VM instance startups can be eliminated, thus existing DCI Bridge

deployments within the cloud using the local submission plug-in are theoretically

available for use immediately.

6. Conclusions and future work

In this paper we have specified the DCI Bridge, which is an implementation of

a generic concept how to enable DCI interoperability. The created solution is proved

to be feasible for many major grid workflow management systems (such as ASKALON,

MOTEUR, gUSE/WS-PGRADE and others) on job level and indirectly also on work-

flow level. We have successfully created a common service platform compatible with

almost all major Grid (service and desktop grids) and some of the cloud and cluster in-

frastructures. Our solution not only resolves DCI interoperability, but with its API it

simplifies the development of multi-DCI capable workflow management systems. The

usage of the DCI Bridge can significantly foster the establishment of DCI/middleware

independent eScience gateways. The created DCI Bridge API based on BES, which

simplifies and standardize the generic communication between workflow management

systems and DCIs. Additionally we have extended the communication API with some

more functionality to support all the extra feature sets of the underlying DCIs. These

functionalities are optional and merely used only for extra services. The integration

work was difficult and took a long time for us. The development lasted almost 5 years,

and firstly this solution was inner part of the gUSE system. As during these years we

have developed connectors for almost all existing major Grid middlewares (version

dependent implementations) we have started to do refactoring both at code and at

functionality levels. During the last two years our solution matured into a standalone

component, and we have finally released it as open source service at Sourceforge (be-

fore that it was an internal module of gUSE’s SOA based system). This standalone

service component enables other workflow management systems to benefit DCI inter-

operability the same standardized way as gUSE is capable to do. The plug-in like

internal architecture of the DCI Bridge offers simple extension capabilities to the de-

velopers, if they need to utilize other, non-implemented DCIs. The DCI Bridge is

not the ultimate solution for all the DCI related issues, and nor it tries to solve all

the problems. The DCI Bridge is now providing support for authentication, job sub-

mission/management and status monitoring functionalities. A workflow provenance,

storage service features are still out of the range of the DCI Bridge, such service fea-

tures shall be embedded as internal components into the workflow management system

(in our case we are doing this also with gUSE). However the job status information

is propagated back from the DCI Bridge to the connected workflow management sys-

2012/09/23; 18:08 str. 15/18

Enabling generic distributed computing infrastructure (...) 75

tem and it can be easily used for workflow provenance. DCI Bridge provides -for

external usage- a generic/simplified job status list, and it is using internally its own

status list for all the job handling/monitoring mechanisms. Basically all middleware

specific job statuses are mapped to DCI Bridge’s internal job status list. The DCI

Bridge plug-in contains all mapping information. The original job statuses -received

from the DCI- are propagated back to the workflow management system also as log

information to enable workflow management system to react or do granular job sta-

tus monitoring. This is only useful if the workflow management system is able to

understand the middleware specific job status information (usually this is not a case).

Storage references are handled transparently by the DCI Bridge. The workflow man-

agement system should be able to access and manage the storage infrastructure by

default. DCI Bridge handles storage related information only as references and does

not provide any translation between existing storage solutions yet. In this paper we

have described DCI Bridge’s internal architecture, provided information how its com-

ponents are working together, and showed some additional usage scenarios as well.

According to our tests the DCI Bridge implementation is able to resolve successfully

DCI compatibility issues. The implemented DCI Bridge solution is used successfully

in the SHIWA project as an internal service at the back-end part of the FGI solution

to resolve the DCI interoperability issues between various middleware types (gLite,

ARC and UNICORE). The DCI Bridge is used as one of the core component in the

SHIWA Simulation Platform (http://ssp.shiwa-workflow.eu/) and internally in

many other gUSE based eScience gateways. The modular, plug-in like architecture

enables the DCI Bridge service to be extended easily, and during our development

work we have included support for many DCI platforms (such as cluster and cloud

infrastructure and web services). As future work we are planning to extend the capa-

bilities of the DCI Bridge with additional middleware support; thus we are trying to

include support of additional cloud and service grid type DCIs and provide support

for full load balancing of the DCI Bridge service.

Acknowledgements

This work was supported by EU project SHIWA (SHaring Interoperable Workflows for

large-scale scientific simulations on Available DCIs), which is an Integrated Infras-

tructure Initiative (I3) project (contract number 261585). The SHIWA project aims

to leverage existing workflow solutions and enable cross-workflow and inter-workflow

federative exploitation of DCI Resources by applying both a coarse- and fine-grained

strategy. Full information is available at http: // www. shiwa-workflow. eu .

References

[1] Liferay. http://www.liferay.com/, accessed 09.10.2011.

[2] Shiwa project. http://www.shiwa-workflow.eu/, accessed 09.10.2011.

2012/09/23; 18:08 str. 16/18

76 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

[3] Demuth B., Schuller B., Holl S., Daivand J., Giesle A., Huber V., Sild S.: The

unicore rich client: Facilitating the automated execution of scientific workflows.

In 2010 IEEE Sixth International Conference on e-Science, pp. 238–245, 2010.

[4] Duan R., Fahringer T., Prodan R., Qin J., Villazón A., Wieczorek M.: Real

world workflow applications in the askalon grid environment. In Proc. of EGC

2005, pp. 454–463, 2005.

[5] Farkas Z., Kacsuk P., Balaton Z., Gombás G.: Interoperability of boinc and egee.

Future Generation Computer Systems, 26(8):1092–1103, 2010.

[6] Glatard T., Montagnat J., Lingrand D., Pennec X.: Flexible and efficient work-

flow deployment of data-intensive applications on grids with moteur. Interna-

tional Journal of High Performance Computing Applications, pp. 347–360, 2008.

[7] Hull D., Wolstencroft K., Stevens R., Goble C., Pocock M., Li P., Oinn T.:

Taverna: a tool for building and running workflows of services. Nucleic Acids

Research, 34:729–732, 2006.

[8] Kacsuk P.: P-grade portal family for grid infrastructures. Concurrency and

Computation: Practice and Experience, doi: 10.1002/cpe.1654:235–245, 2011.

[9] Kacsuk P., Marosi A., Kozlovszky M., Ács S., Farkas Z.: Parameter sweep job

submission to clouds. In Cafaro M., Aloisio G., editors, Computer Communi-

cations and Networks: Grids, Clouds and Virtualization, pp. 123–141. Springer,

2010.

[10] Kertész A., Kacsuk P.: Gmbs: a new middleware service for making grids inter-

operable. Future Generation Computer Systems, 26:542–553, 2010.

[11] Krefting D., Glatard T., Korkhov V., Montagnat J., Olabarriaga S.: Enabling

grid interoperability at workflow level. In Proc. of the Grid Workflow Workshop,

Köln, Germany, 2011.

[12] Plankensteiner K., Prodan R., Fahringer T., Montagnat J., Glatard T., Her-

mann G., Harrison A.: Iwir specification ver. 0.3. SHIWA project deliverable,

2010.

Affiliations

M. Kozlovszky
MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary,
m.kozlovszky@sztaki.hu

K. Karoczkai
MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary,
[karoczka@sztaki.hu

I. Marton
MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary,
imarton@sztaki.hu

A. Balasko
MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary,
balasko@sztaki.hu

2012/09/23; 18:08 str. 17/18

Enabling generic distributed computing infrastructure (...) 77

A. Marosi
MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary,
atisu@sztaki.hu

P. Kacsuk
MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary,
[kacsuk@sztaki.hu

Received: 24.12.2011

Revised: 23.03.2012

Accepted: 9.07.2012

2012/09/23; 18:08 str. 18/18

78 M. Kozlovszky, K. Karoczkai, I. Marton et. al.

