
Roman Dębski
Tomasz Krupa
Przemysław Majewski

ComcuteJS: A WEB BROWSER BASED
PLATFORM FOR LARGE-SCALE
COMPUTATIONS

Abstract The paper presents a new, cost effective, volunteer computing based platform.
It utilizes volunteers’ web browsers as computational nodes. The computational
tasks are delegated to the browsers and executed in the background (indepen-
dently of any user interface scripts) making use of the HTML5 web workers
technology. The capabilities of the platform have been proved by experiments
performed in a wide range of numbers of computational nodes (1–400).

Keywords volunteer computing, parallel computations, large-scale computations,
augmented cloud computing

14 lutego 2013 str. 1/10

Computer Science • 14 (1) 2013 http://dx.doi.org/10.7494/csci.2013.14.1.143

143

1. Introduction

For many years, scientists have been solving large-scale1 computational problems
with the use of supercomputers or, more recently, computer clusters or grids. These
computational platforms are still the best options in many cases, but they have their
limitations (e.g. related to scalability). In such situations one can utilize the concept
of Augmented Cloud [6] or, in general, a web browser based volunteer computing.

In this paper a new, lightweight and cost effective approach to building a highly
scalable computing platform is presented. It utilizes the concept of web browser based
volunteer computing and is based on some of the HTML5 technologies2.

In the first section an overview of the platforms used for large-scale computations
is presented. It also includes a brief description of the web browser based volunteer
computing concept. The main part of the article starts with an overview of the plat-
form architecture. Next, the main use case description and the platform implementa-
tion details are presented. The platform capabilities discussion, demonstrated on an
example computation3, constitute the final part of the paper.

2. Platforms for large-scale computations

Many large-scale computations are performed using supercomputers. This approach
has many advantages but, unfortunately, also one big disadvantage – it has always
been expensive. That is why computer clusters (as a cost-effective4 supercomputer
substitute) started being used (for example [3]). Yet, sometimes the total cost (and
effort) of building a computer cluster can also be too high (e.g. when thousands of
computers are needed to perform a computation effectively). In such cases the ideas
of Grid Computing [9], Volunteer Computing [1], Cloud Computing [10], [7], [13], [11],
[2] or Augmented Cloud Computing [6], [4] can be utilized.

The platform presented in this paper (i.e. ComcuteJS) utilizes the idea of the web
browser based volunteer computing. A brief description of this concept is presented
in the next two paragraphs.

Volunteer Computing. Volunteer Computing5 is a type of distributed computing in
which some of the computational resources come from the number of nodes dynami-
cally connecting to a network.

It is worth mentioning two Volunteer Computing projects:
• Great Internet Mersenne Prime Search6, which was the first project (started in

1996) utilizing the idea of Volunteer Computing,

1The term ‘large-scale problem’ is used here in a broad sense, referring to all problems considered
difficult for all known solution methods

2mainly on web workers as a way of introducing multi-threading into a web browser
3it was a search for prime numbers in range 〈2, 107〉
4mainly because it is based on commodity hardware
5or a similar idea – Sideband Computing [14]
6http://mersenne.org/

14 lutego 2013 str. 2/10

144 Roman Dębski, Tomasz Krupa, Przemysław Majewski

• SETI@Home7 – searching for signs of extra-terrestrial intelligence (launched in
1999), which is by far the most famous one.
Volunteer Computing projects may be implemented using several middlewares,

such as Berkeley Open Infrastructure for Network Computing8 (BOINC) (open sour-
ce, base of SETI@Home), Xgrid9 (a proprietary software prepared by and for Apple)
or Grid MP10 (a commercial product).

Web Browser Based Volunteer Computing. Unfortunately, the existing Volunteer
Computing environments are usually dedicated to one project/application11 and,
what is very often unwelcome nowadays, require some software to be installed on
each volunteer’s PC. The idea of utilizing a web browser as an environment for exe-
cuting a volunteer’s computational task addresses the last issue. This idea is not new.
In the past it was implemented by using Java Applets as computational workers (e.g.
[12], [5]). In the next sections the new approach – based on JavaScript – is presented.

3. ComcuteJS: the architecture and processing

The architecture of the ComcuteJS platform is based on the Comcute Reference
Architecture12 shown in Figure 1.

It is comprised of the following three layers:
Comcute-Core – can consist of many nodes; it is responsible for controlling compu-

tations via the system console (starting, stopping, monitoring), data partitioning
and aggregating of results; the system console offers two interfaces: one for a sys-
tem administrator (mainly user accounts management) and the other one for
programmers,

Computational Task Dispatcher(s) – can consist of many nodes, grouped in po-
ols (each pool is controlled by one node from the core layer); it plays the role of
the Core gateway (it can also be seen as a layer of communication servers),

(Web Browser Based) Computational Workers – responsible for executing the
computational tasks.

A programmer’s perspective. All computational jobs in the system are defined in
projects and stored in a database. Each project (computational job) consists of a Ja-
vaScript code and input data. Jobs are divided into tasks which are the computation
units in the system. In case of a SPMD computation (Single Program, Multiple Da-
ta), each task comprises the same code and a subset of the input data (the subsets
are created by a data partitioner in the job preprocessing step shown in Fig. 2).

7http://setiathome.berkeley.edu/
8http://boinc.berkeley.edu/
9http://www.apple.com/pl/server/macosx/technology/xgrid.html

10http://www.univa.com/
11And so, it cannot be considered even as a quasi-general purpose platform.
12the Comcute Reference Architecture has been defined in order to provide a base for a family

of volunteer-based platforms for large-scale computations

14 lutego 2013 str. 3/10

ComcuteJS: a web browser based platform (...) 145

Figure 1. Comcute Reference Architecture.

The main processing in the system is performed in two simultaneous loops repe-
ated as long as there are some tasks to be computed. In the first loop (see Fig. 2), each
dispatcher downloads computational tasks (as JSON messages) to its local task queue
and sends partial results to the master node, which aggregates them and constantly
monitors the computation status.

In the second loop, each web worker (running in a volunteer’s browser) downloads
a task (as a JSON message) from a dispatcher, performs the task and uploads the
result to the dispatcher.

4. ComcuteJS: implementation details

ComcuteJS was created with the use of ComcutePDK (see the next paragraph), which
is a member of the three Software Development Kits (SDK) family intended to sup-
port building web browser based platforms for large-scale computations. The family
of SDKs (called Comcute Environment) shares the same programming model and
assumes the same architecture of the underlying run-time platform (see Comcute
Reference Architecture in Fig. 1). These three SDKs are called: ComcuteJDK, Com-
cutePDK and ComcuteCDK (see Fig. 3). Each SDK is based on a different technology
and is dedicated to different kinds of systems (differing for instance in scalability and
a deployment cost).

14 lutego 2013 str. 4/10

146 Roman Dębski, Tomasz Krupa, Przemysław Majewski

Figure 2. ComcuteJS main use case: performing a computational task.

Figure 3. ComcutePDK as a part of Comcute Environment.

ComcutePDK. This SDK is intended to support building volunteer-based computa-
tional platforms which should be:
• lightweight (regarding the core and the dispatchers),
• easy to deploy and administer,
• inexpensive in usage

and are based on the following technologies:
• Apache HTTP Server + PHP + MySQL (the comcute back-end),
• HTML5/WebWorkers (web-based computational workers).

14 lutego 2013 str. 5/10

ComcuteJS: a web browser based platform (...) 147

5. Experimental results

In order to demonstrate the platform capabilities the prime numbers search problem in
the interval 〈2, 107〉 was solved13. The infrastructure used to perform the computation
consisted of one comcute-core server, nine task dispatchers and forty computational
nodes14 (PCs, Windows 7), each running from one to ten web browsers15 (in each
computation all forty nodes were used, so one browser means 40 × 1 = 40 compu-
tational workers, two means 40 × 2 = 80 computational workers and so on). The
solution was based on domain (data) decomposition – the interval was divided into
104 sub-intervals (each having 103 numbers).

To conduct an analysis of the parallel computation, three classical metrics were
calculated: speedup S, efficiency E and serial fraction (Karp–Flatt metric [8]) f . They
are defined as follows:

• speedup:

S(p, n) =
T ∗(1, n)
T (p, n)

• efficiency:

E(p, n) =
S(p, n)

p

• serial fraction:

f(p, n) =
1

S(p,n) − 1
p

1− 1
p

where:

n – the problem size,
p – the number of processors,
T ∗(1, n) – the execution time of the sequential algorithm,
T (p, n) – the execution time of the parallel algorithm with p processors.

There were three series of tests performed: for one, five and nine task dispatchers.
In each series 10 measurements of the corresponding execution times were taken: for
40, 80. . . and 400 computational workers. Next, these measurements were used to
calculate the aforementioned metrics. They are shown in Figures 4, 5 and 6. One can
notice that the parallel solution of the prime numbers search problem is relatively
efficient, and (surprisingly) the best solution was achieved in the configuration with
only one dispatcher.

13because the experiment was just a “demonstrator of any large-scale parallel computation”,
a very simple and ineffective (deliberately!) algorithm was chosen (see Listing 1.); for n = 107 the
execution time of the sequential realization (p = 1) was equal to 9480 s

14the comcute-core server and task dispatchers were located in Gdansk (the office of Fido In-
telligence), whilst all the computational nodes were located in Cracow (Department of Computer
Science, AGH University of Science and Technology)

15Google Chrome

14 lutego 2013 str. 6/10

148 Roman Dębski, Tomasz Krupa, Przemysław Majewski

1 40 80 120 160 200 240 280 320 360 400

0

50

100

150

200

250

#computational workers

sp
ee
d
u
p

1 dispatcher
5 dispatchers
9 dispatchers

linear speedup

Figure 4. Speedup as a function of the number of computational workers for one, five and
nine computational task dispatchers.

1 40 80 120 160 200 240 280 320 360 400
0.2

0.4

0.6

0.8

1

#computational workers

ef
f
ic
ie
n
cy

1 dispatcher
5 dispatchers
9 dispatchers

Figure 5. Efficiency as a function of the number of computational workers for one, five and
nine computational task dispatchers.

14 lutego 2013 str. 7/10

ComcuteJS: a web browser based platform (...) 149

40 80 120 160 200 240 280 320 360 400

1

2

3

4

5

6

7
·10−2

#computational workers

se
ri
a
l
f
ra
ct
io
n

1 dispatcher
5 dispatchers
9 dispatchers

Figure 6. Serial fraction as a function of the number of computational workers for one, five
and nine computational task dispatchers.

6. Conclusion

For many years, scientists have been performing large-scale computations with the
use of supercomputers, computer clusters or grids. Recently, yet another option – web
browser based computational platforms – has become popular. These new platforms
can offer an extensive computing power and good scalability while remaining very
cost-effective.

In this paper such a platform (called ComcuteJS) has been presented. It utilizes
the concept of web browser based volunteer computing and is based on some of the
HTML5 technologies (web workers). The capabilities of the platform have been de-
monstrated by execution of an example computation (prime numbers parallel search).
The classic performance characteristics i.e. speedup, efficiency and serial fraction, pre-
sented in the final part of the article, proved that this approach can be effective.

It should be noted, however, that the current implementation is most appropriate
for coarse granular problems, i.e. in which the computation-to-communication ratio
is relatively high. Examples of such problems can be an evolutionary algorithm with
a simulation-based evaluation of each individual or a MapReduce-like computation
with a time-consuming mapping phase. Both the simulation-based evaluation and the
mapping task can be delegated to the volunteers’ web browsers.

Another important note is that the current implementation is only a proof of
concept prototype and, in consequence, it does not address many issues which are
often critical in distributed systems (e.g. the access control or secure communication).

14 lutego 2013 str. 8/10

150 Roman Dębski, Tomasz Krupa, Przemysław Majewski

1 function f indPr imes (from , to) {
var fBig = par s e In t (from) ;
var tBig = par s e In t (to) ;
tBig = tBig + fBig ;
var r e s u l t =””;

6 var prime = true ;

while (tBig > fB ig) {
prime = true ;
i f (fBig%2==0){

11 prime = f a l s e ;
}
i f (prime){

var tmp = fBig / 2 ;
tmp = Math . f l o o r (tmp) ;

16 var i = 2 ;

while (tmp > i) {
i f (fBig % i == 0) {

prime = f a l s e ;
21 break ;

}
i++;

}
}

26 i f (prime)
r e s u l t += fBig . t oS t r i ng ()+ ’ ’ ;

fB ig++;
}
return r e s u l t ;

31 }

Listing 1: Computational worker’s task (JavaScript)

In the near future the authors plan to conduct broader experiments with different
classes of computational problems.

Acknowledgements

The work presented in this paper was partially supported by the Polish National Center
of Research and Development grant No. 0108/R/T00/2010/11.

References

[1] Anderson D. P., Korpela E., Walton R.: High-performance task distribution for
volunteer computing. In Proc. of the First International Conference on e-Science
and Grid Computing, 2005.

[2] Armbrust M., et al.: Above the clouds: A Berkeley View of Cloud Computing.
Technical Report, UC Berkeley, 2009.

[3] Bader D. A., Pennington R.: Cluster computing: Applications. The International
Journal of High Performance Computing Applications, 15(2):181–185, May 2001.

14 lutego 2013 str. 9/10

ComcuteJS: a web browser based platform (...) 151

[4] Byrski A., Dębski R., Kisiel-Dorohinicki M.: Agent-based computing in augmen-
ted cloud environment. International Journal of Computer Systems Science and
Engineering, (1):7–18, 2012.

[5] Czerwiński B., Dębski R., Piętak K.: Distributed agent-based platform for large-
scale evolutionary computations. In Proc. of 5-th Int. Conf. on Complex Intelli-
gent and Software Intensive Systems. IEEE Press, 2011.

[6] Dębski R., Byrski A., Kisiel-Dorohinicki M.: Towards an agent-based augmented
cloud. Journal of Telecommunications and Information Technology, (1):16–22,
2012.

[7] Jackson K., et al.: Performance analysis of high performance computing applica-
tions on the amazon web services cloud. In CloudCom’10, 2010.

[8] Karp, Alan H., Flatt, Horace P.: Measuring parallel processor performance. Com-
munication of the ACM 33 (5), pp. 539–543, 1990.

[9] Kesselman C., Foster I.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1998.

[10] Mell P., Grance T.: The nist definition of cloud computing (draft). Technical
report, National Institute of Standards and Technology, 2011.

[11] Napper J., Bientinesi P.: Can cloud computing reach the top500. In UCHPC-
MAW’09, 2009.

[12] Sarmenta L. F. G., Hirano S.: Bayanihan: Building and studying web-based vo-
lunteer computing systems using java. Future Generation Computer Systems,
15:675–686, 1999.

[13] Vecchiola C., Pandey S., Buyya R.: High-performance cloud computing: A view
of scientific applications. In ISPAN 2009, pp. 4–16. IEEE Computer Society,
2009.

[14] Xu Y.: Global sideband service distributed computing method. In Proc. of the
International Conference on Communication Networks and Distributed System
Modeling and Simulation (CNDS98), 1998.

Affiliations

Roman Dębski
AGH University of Science and Technology, Krakow, Poland, roman.j.debski@gmail.com

Tomasz Krupa
Fido Intelligence, Gdansk, Poland, tkrupa@fidointelligence.com

Przemysław Majewski
Fido Intelligence, Gdansk, Poland, pmajewski@fidointelligence.com

Received: 27.06.2012
Revised: 19.10.2012
Accepted: 3.12.2012

14 lutego 2013 str. 10/10

152 Roman Dębski, Tomasz Krupa, Przemysław Majewski

