COMPUTER SCIENCE e 16 (1) 2015 http://dx.doi.org/10.7494/csci.2015.16.1.3

JAKUB GRZESIAK
L.ukAsz JEDRYCHOWSKI

MODEL OF RECONFIGURATION
IN COMPONENT ENVIRONMENTS

Abstract | The significance of component-based software and component platforms has
increased over the last twenty years. To achieve full flexibility, a reconfiguration
process is needed that allows us to change system parameters without rebuilding
or restarting. In terms of components, such a process should be executed with
extraordinary care, since the contracts between components must be preserved.
In this article, a model of reconfiguration (including the roles of the components
to be used in this process) is proposed. The provided solution is general and
could be applied to many component platforms.

Keywords | component, DSL, reconfiguration

Citation | Computer Science 16 (1) 2015: 3-15


http://journals.agh.edu.pl/csci/

4 Jakub Grzesiak, f.ukasz Jedrychowski

1. Introduction

The significance of component-based software and component platforms has increased
over the last 20 years [15]. Currently, most enterprise applications are developed for
environments such as Microsoft .NET, Java EE, or lightweight component frameworks
(e.g., Spring). To achieve full flexibility, a reconfiguration process is needed that allows
us to change the parameters of a system without rebuilding or restarting. In terms
of components, such a process should be executed with extraordinary care, since the
contracts between components must be preserved.

The main goal of the reconfiguration process is to realize changes in configuration
without rebuilding or restarting an application. It is necessary that, after reconfigu-
ration, all constraints are still met and the system works properly.

There are many reasons why the reconfiguration process is necessary. One of the
most important is to customize an application that depends on changes in the envi-
ronment. Many configuration change requests come from a user or another system,
implied from functional or non-functional requirements. In many cases, rebuilding
or restarting an application is more expensive than processing a reconfiguration. In
terms of high-availability systems, such processes are often impossible. The recon-
figuration process should preserve consistency (e.g., contracts between components)
and should not trigger any side-effects. Existing solutions are not general, as most of
them are useful only for particular components and are lacking in functionality. We
have introduced a more-general solution that could be applied to many component
platforms.

The structure of the article is described below. In section 1, we introduce the
problem. Then in section 2, we present technologies which are currently available. In
section 3 and 4, we describe the model of reconfiguration and the framework archi-
tecture. In sections 5, 6, and 7, we present the effects of our research.

2. Reconfiguration frameworks — the state of the art

The most important theoretical issues related to reconfiguration are described in
article Issues in the Runtime Modification of Software Architectures [14]. Tt lists the
characteristics of dynamic architectures and shows the challenges of implementation.
Two cases can be distinguished when a new module is required in a system. The
first is reactive, due to issues during runtime. The second is proactive — when a new
module is an extension of functionality. The introduction of a dynamic architecture
requires the coverage of three topics: the time when reconfiguration can be processed,
which operations are available, and what constraints are imposed on the system and
its components.

The key issue that should be solved is component substitution. This requires
a mechanism to check whether or not components are equivalent. This problem is
comprehensively described in Component Reconfiguration in Presence of Mismatch
[4]. The authors proposed a solution to the problems associated with non-compliant



Model of reconfiguration in component environments 5

modules. This consists of three stages: detection, compatibility check, and substitu-
tion. Another approach is based on adapters. It assumes that a module has a set
of provided and required operations. In the case of a component, it will be as a con-
tract. An adapter-based solution is more flexible, because it is automatically generated
using a component’s description with LTS (Labeled Transition System) [5]. To create
a more-effective solution, reconfiguration could use only context equivalence between
components instead of full equivalence.

To support the reconfiguration of component-based software, some specialized
frameworks have been developed. They differ in their scopes of functionality and
the technologies upon which they are built. Due to different reconfiguration models,
the variety of technologies, and limitations, there is no universal framework for all
purposes.

Peyman Oreizy described general concepts of reconfiguration and introducd
a prototype solution named ArchShell [14]. It supports the creation and run-time
modification of software. ArchShell provides a command line interface for creating
and starting systems as well as changing their architecture. A user can use it in a si-
milar fashion as a typical UNIX console. Elements of system architecture are C2 [7]
components (implemented in Java) that use connectors to pass messages. ArchShell
supports multi-threading, processes, and mechanisms of an operating system.

A second interesting approach was described by Batista et al. in [1]. It is a
meta-framework named Plastik, which uses reconfiguration and architecture descrip-
tion language based on ACME [6] and components in OpenCOM [12] model. Plastik
supports two types of reconfiguration:

e programmed, in which changes are defined during design of a system as
a predicate-action pair; reconfiguration is fired when a given state (described
by a predicate) is achieved;

e ad-hoc, in which changes are unpredictable during the architecture design pha-
se; a user can only define constraints which should be met for all components;
reconfiguration could be processed only when the integrity and consistency are
preserved.

Fractal [3] is a hierarchically-structured component model that provides reflecti-
ve features which support dynamic architectural reconfiguration. It was developed by
OW2 Consortium. It supports design, implementation, and reconfiguration of a wi-
de class of systems. Components in Fractal consist of two parts: a controller and
a content (internal subcomponents). A controller is responsible for the implementa-
tion of the subcomponents’ semantic. In a particular case, it allows components to be
reconfigured. Reconfiguration is processed by an introspection mechanism.

OSGi technology is a set of specifications that defines a dynamic component sys-
tem for Java [11]. It reduces software complexity by providing a modular architecture
for large-scale distributed systems as well as small, embedded applications. OSGi has
a few developed implementations: Apache Felix, Eclipse Equinox, and Knopflerfish.
The OSGi component model is a dynamic model. Bundles (OSGi component) can



6 Jakub Grzesiak, f.ukasz Jedrychowski

be installed, started, stopped, updated, and uninstalled without bringing down the
whole system.

Existing solutions are not general. Most of them have many restrictions (e.g.,
a given component platform) and lacks functionality. The details are described below.

ArchShell [14] assumes that all components and connectors are written in Java,
using the C2 [7] framework.

Plastik [1] is an ADL/Component runtime integration meta-framework. In the-
ory, it offers a platform-independent language to describe the software architecture by
using an extension of ACME/Armani [6] and mechanisms for loading the application
on the underlying platform. However, it is implemented only for the OpenCOM [12]
component model. Moreover, components are not allowed to make reconfiguration
decisions.

Fractal [3] does not support ad-hoc reconfiguration. Fractal also does not have
formal support to ensure consistency.

OSGi is the most-advanced solution. However, it still requires components to
follow its own specification. This could be hard to achieve, especially for applications
which use class loaders directly or have extremely high coupling between components.

Due to limitations connected with a specific component platform as well as those
described above, we decided to propose a general model that could be applied to
almost every component environment. In this article, a model of reconfiguration as
well as component roles to be used in the process are proposed. The provided solution
is general and could be applied to many component platforms. AgE Reconfiguration
Framework is provided as an example. It combines the concept of constrained run-time
reconfiguration [14] and supports both programmed (via domain-specific language)
and ad-hoc reconfiguration [1].

3. Reconfiguration

We use the following notion in this article. We assume that a component is an inde-
pendent unit of deployment that provides a set of functionalities exposed by interfaces.
A component definition consists of parameters which specify the behavior of a gi-
ven component instances which are nothing more than just deployed components.
We distinguished two different scopes:
e singleton — only one instance with a given configuration exists in a system,
e prototype — many instances with a given configuration exist in a system.
Reconfiguration is a process in which component definitions and parameters of
singleton-scope component instances are changed. It is possible to define the following
elements of this process:
a) change of a property which is simple type of component platform (e.g., Boolean,
Integer, Double, String) — parameters of an instance are updated,
b) change of a reference to another component — references from one instance to
another are modified,



Model of reconfiguration in component environments 7

c) change of a property which is a collection in the component platform,

d) dynamically add or remove instance properties,

e) update a definition of a component in an instance provider (which is a component
definition repository) — as defined in a), b), and c),

f) replace an implementation of a component with another one.

Reconfiguration needs to be processed in sync with an instance provider to ma-
intain consistency of components and instances.

From the user’s point of view, we can define the following requirements for a Re-
configuration Framework. A user of the component platform (that supports Reconfi-
guration Framework — proposed in the next section) does not always want to rebuild
or restart the application in order to use it with new parameters. The user would
like to define the structure and a reconfiguration of the components that are the ba-
se of the application. For example, by a declaration in Domain Specific Languages
(DSL): Architecture Description Language (ADL, for structure) and Reconfiguration
Language (RL, for reconfiguration) files.

Also, the authors of the components would like to define constraints for any given
properties. For example, the user may decide that a numeric property needs to have
a value within a given range which may break contracts between components. It sho-
uld be possible to implement a custom code which handles reconfiguration parameters
and returns a boolean value determining if all constraints are met. The framework
should not allow the user to change a property to a value which breaks the registered
constraints. In such a case, an exception should be thrown. This concept is a varia-
tion of the Bertrand Meyer’s Design by Contract [13]. In the original approach, we
have preconditions, postconditions, and invariants specified for each component. In
the proposed solution, we would be assured that all of them are still met after reconfi-
guration by evaluating some custom constraint logic. It will not be necessary to create
a specific data structure for handling preconditions, postconditions, and invariants.

4. Reconfiguration Framework

We distinguished the following elements of the Reconfiguration Framework as presen-
ted in Figure 1.

A Diff is used as a representation of component reconfiguration. It contains na-
mes and values of properties. In the case when property with a given name exists —
a new value is assigned; otherwise, the new property would be added to the compo-
nent. From an implementation point of view, a Diff could aggregate a dictionary/map
structure in which property names are keys and new property values are associated
with keys.

A Transaction is a reconfiguration that could affect many components. It should
be processed against all components or none at all, according to the ACID proper-
ties (atomicity, consistency, isolation, and durability). Technically, it is a collection
of Diff objects. When something goes wrong during the execution of a transaction,



8 Jakub Grzesiak, f.ukasz Jedrychowski

the framework will create a reversed transaction based on the initial configuration.
A reversed transaction tries to undo changes made by the original one.

A reconfigurable component needs only to implement a simple interface (IRe-
configurable) via one of two methods: one which gives information if reconfiguration
is possible, and another that enables a component to be notified about processed
reconfiguration. If the component platform does not support a change of parameters
internally, then the IReconfigurable interface should be extended with appropriate
methods for updating component properties.

All reconfigurable objects need to be registered within Reconfiguration Mana-
ger. This is responsible for processing all reconfigurations. ReconfiguraitonManager
reconfigures components and also updates their definitions.

Reconfiguration Provider delivers reconfigurations to a selected Reconfigura-
tionManager in an appropriate time (for example, when computation ends). Reconfi-
gurationProvider contains all necessary information about reconfigurations.

<<Interface>> <<Interface>>
IReconfigurationProvider [~~~ "~~~ =~~~ 77 > IReconfigurationManager
1
I
I
\V4
Transaction
< - - - - — - <<Interface>>

1
- I
I
L Vi
- <<Interface>>
\/ P IReconfigurable

Diff +isReconfigurationPossible()
+setReconigurationProcessed()

1
I
I
I
I
I
I
: IPushReconfigurationManager
I
I
I
I
I
I

Figure 1. Reconfiguration Framework class diagram.

A reconfiguration process is initiated by the Reconfiguration Framework after the
initiating event has occurred and the application is working. The framework checks
whether the components are ready to change their parameters. It is possible to post-
pone or reject the process. Reconfiguration is performed unless constraints are not
broken; otherwise, the next reconfiguration is processed or the application is stopped.
The first case is only valid for high-availability systems, and the second is valid only
for certain kinds of computations. For each reconfiguration for a given component, all
provided constraints are checked. The Reconfiguration Framework is responsible for
notifying components about definition changes and updating values or references of



Model of reconfiguration in component environments 9

their properties. After reconfiguration is finished, the application is working with the
new parameters.

The provided solution implements constrained run-time push reconfigu-
ration model and is handled by PushReconfigurationManager. Constrained,
because the framework does not allow properties to be changed to forbidden va-
lues/references. Run-time as a reconfiguration is processed when the application is
working. Push, because the framework is responsible for process initiation, compo-
nent notification, and updating both instances and definitions. Authors of components
have to provide methods for deciding whether to reconfigure or not, changing parame-
ters (if component platform does not support it internally), and processing necessary
operations after reconfigurations are finished. They could also define constraints.

Theoretically, it is possible to implement components in such a way that the
reconfiguration process could be initiated and handled by them. In this case, the
Reconfiguration Framework supports only the notification and update of definitions.

Reconfiguration Framework

. Reconfigurable components
Transaction 9 P

|:> Reconfiguration

script

ReconfigurationProvider

Component

User

Component

ReconfigurationManager

Component

il

Figure 2. Reconfiguration Framework overview.

Architecture Description and Reconfiguration Languages are used to
describe system architecture and all reconfigurations (see Fig. 2). To support the cre-
ation of an application, its structure and component parameters should be described
with the ADL, as proper definitions are inferred from such files. A reconfiguration
should be stored in the RL files, containing both definitions of application changes
(Diffs and Transactions) and information about the time in which the process should
be fired. The reconfiguration language should offer the following constructs:

e an assignment instruction which could be used to assign new values of properties
or references (on the left side of instruction we need to have property of a given
component identified),

e instructions for manipulating properties which are collections,

e an instruction which allows the grouping of reconfigurations in transactions,



10 Jakub Grzesiak, f.ukasz Jedrychowski

e arithmetic and boolean operators,
e structural constructs (e.g., loops or conditional statements).
In the reconfiguration mentioned above, language changes within the component-
system architecture could be described. Due to this fact, we can conclude that this
language could be also used as ADL.

5. Result of the project

The AgE! is a computational platform for solving a wide range of optimization and
simulation problems by multi-agent systems based on heuristics; e.g., evolutionary
algorithms. [8] It is developed by the Department of Computer Science of AGH Uni-
versity of Science and Technology in Krakow, Poland. Computational agents in the
AgE platform are its components.

Components in the AgE platform are nothing more than standard Java classes.
There are no restrictions concerning component classes — no need to implement inter-
faces or extend another class. Components are registered within an instance provider,
which is implementation of the service-locator pattern. It allows us to obtain services
by type, parameterized-type, or identifier. After this operation, a component instance
is returned. The instance is created only during the first request and then cached
(similar behavior to the singleton pattern).

Running a simulation or a computation based on heuristics requires us to change
one or more parameters of computational agents, because the obtained results might
not be acceptable. For example, optimization results could be divergent from expected
extremum. Without a reconfiguration framework, the user has to stop computation,
change parameters in an appropriate file with computation structure, and restart
the AgE platform. This operation is time-consuming (updating a file, starting JVM)
and needs to be processed by a human or an external program. AgF. Reconfiguration
Framework solves all of these problems.

The AgE Reconfiguration Framework (see Fig. 3) is an implementation of
the reconfiguration framework model, which is described in the previous sections.

Currently, the AgE Reconfiguration Framework allows us to process all reconfi-
guration aspects. It enables adding, removing, or updating component properties —
both simple types and references. The Reconfiguration Framework is responsible for
maintaining consistency of component definitions.

A user of the AgE platform only declares a computation structure in an XML file
(compliant with AgFE configuration XSD schema) and appropriate reconfigurations in
a DSL file using the AgE Reconfiguration Language. The Reconfiguration Framework
changes parameters after a computation is finished and the platform is still working.
Then, the computation with new parameters is restarted. Authors of the components
do not need to take care of implementing a mechanism for property changes, as
framework handles it for IPropertyContainers.

I1Documentation of the AgE framework http://age.iisg.agh.edu.pl/.



Model of reconfiguration in component environments 11

<<Interface>> ReconfigurationManager
IReconfigurationManager 4 ““““““

PushReconfigurationManager

<<Interface>> <t--------
IPushReconfigurationManager

N Tt --o Transaction
\ ~ = =<
~
\ ~
\ S ~
. . ~
collection per reconfigurable ‘\ S o
\ S
\ S ~
<<Interface>> \ S
. \ ~
IConstraint N So \V
<<Interface>> S\ Diff
—_

IReconfigurable

Figure 3. AgE Reconfiguration Framework class diagram.

The AgE Reconfiguration Language was created with Xtext?2. It has a structure
very similar to Java and offers features described in section 4. In this reconfiguration
language, it is possible to define reconfigurations in loops. This allows a computation
to be described for any configuration of parameters in several lines.

6. Case study

The concept of component reconfiguration can be utilized in many various areas of
component-based systems, such as high-availability systems, computations, or test
automation. In this paper, the proposed concept is illustrated on reconfiguration and
load-balancing of multi-agent systems.

We use our enhancement to run a computation that tries to solve an optimization
problem according to the defined criteria. It is important that the goal can be easily
achieved. We only have to implement two additional, simple methods for reconfigu-
rable components. We modify its behavior without altering its old source code. Now,
it is possible to change a stop condition or any other component during computation.
The computation is running in the meantime. Without a reconfiguration framework,
every time that computation parameters or strategy should be changed, the whole
computation has to be stopped, the configuration has to be changed, and then the
computation started again.

2Documentation of the Xtext framework http://www.eclipse.org/Xtext/.



12 Jakub Grzesiak, f.ukasz Jedrychowski

To illustrate the proposed concept, let us present a sample multi-agent system
that solves the Optimal Golomb Ruler [2]. It is complex combinatorial optimization
problem. The Golomb Ruler is an ordered sequence of n nonnegative integers:

(a1,as,...,a,) where a; < a;y1,a; —a;(1 <=1 < j <=mn) are distinct

The goal is to discover a ruler with a minimum length. It is challenging for optimi-
zation methods. Firstly, it requires proper problem encoding. Next, decision refers to
handling constraints and designing genetic operators. It could be improved by using
some local search methods. Every approach to solve Golomb Ruler problem requires
other configurations, and each of them should be in many versions with different para-
meters. In AgE, the Optimal Golomb Ruler is modeled by an agent structure with the
strategy design pattern applied. For example, we have a shift and inversion mutation
strategy, no crossover, one-point crossover, or two-point crossover variation strategy.

Reconfiguration enables us to run multiple computations with different para-
meters, population size (with and without local optimization). Before the AgE Re-
configuration Framework has been implemented, users had to manually modify the
configuration of computation in an XML file or create a script/program which changes
the configuration file and then restart the platform (stop and start JVM, creation of
computation). Now, they can just create a simple script in Reconfiguration Language
and let the framework do all of this work. For the Golomb Ruler exercise: If a user
would like to make 20 attempts for each of three mutation strategies and for every
100 from 100 to 1000 computation steps, he had to restart the platform 600 times.
Now it is possible to write a RL script like below:

Listing 1. RL script for OGR problem.

computation "ogr.xml"

for (strategy :
[invertionMutation,
shiftMutation,
segmentShiftMutation]) {

mutationStrategy = strategy

for (int steps = 100;
steps <= 1000;
steps = steps + 100) {

stopCondition.no0fSteps = steps

for (int attempt = 1;
attempt <= 10;
attempt = attempt + 1) {
run




Model of reconfiguration in component environments 13

The second case where we use dynamic reconfiguration is load balancing. To cre-
ate a mechanism responsible for load balancing, we use the reconfiguration framework
and query mechanism provided by the AgE platform, which allows us to check the
current load. Thanks to reference reconfiguration, we are able to distribute computa-
tion tasks between computation nodes. We just need to implement an algorithm which
decides if migration of a task is profitable. In our solution, we used a diffusion-based
gradient-scheduling algorithm [10].

The frameworks described in section 2 are not capable of supporting AgE in
solving the aforementioned problems. Most of the existing solutions do not have re-
quired functionality. Moreover, they introduce high coupling to external frameworks,
like ArchShell and C2 framework, or Plastik, which is implemented only for the Open-
COM component model. For both solutions, it will require us to change all existing
AgF components. While the proposed Reconfiguration Framework can be easily im-
plemented in the majority of component technologies, as it only distinguishes a few
interfaces and is not coupled with a component environment. The next benefit of the
AgE reconfiguration framework is related to usability. A Reconfiguration Language
script is quite easy to understand without any knowledge of the internal implemen-
tation of AgE.

7. Conclusions

Existing solutions do not solve the problem of reconfiguration in the component envi-
ronment in general. Most of them have too many restrictions and lack in functionality.
Moreover, their coupling with particular frameworks is too high. We present a model
of reconfiguration that can be applied to the majority of component platforms. We
created AgE Reconfiguration Framework as an example of a solution based on that
model. We provide constraints to avoid incorrect reconfiguration. Some other frame-
works with mechanism to check constraints do not allow the reconfigurable component
to decide for itself. This is possible in the AgE Reconfiguration Framework. If constra-
ints are not broken, a component can decide whether to accept, postpone, or reject
reconfiguration. This feature makes our solution more flexible and gives users more
possibilities.

An extension of this work is to consider the reconfiguration of nested components.
In particular cases, reconfiguration of nested components could be done without pol-
ling them. The decision whether to reconfigure subcomponent or not is made by its
parent, as reconfiguration (Diff) is not passed to nested component. Such a feature
would be useful, for example, when a parent is an active or autonomic component
and all of its children are passive.



14 Jakub Grzesiak, f.ukasz Jedrychowski

References

[1] Batista T., Joolia A., Coulson G.: Managing Dynamic Reconfiguration in
Component-Based Systems. In: EWSA’05 Proceedings of the 2nd European con-
ference on Software Architecture, 2005.

[2] Bloom G., Golomb S.: Applications of numbered undirected graphs. In: Proce-
edings of the IEEE, vol. 65(4), pp. 562-570, 1977.

[3] Bruneton E., Coupaye T., Leclercq M., Quéma V., Stefani J.B.: The fractal
component model and its support in Java. Software: Practice and Experience,
vol. 36 (11-12), pp. 1257-1284, 2006.

[4] Canal C., Cansado A.: Component Reconfiguration in Presence of Mismatch.
Informatica (Slovenia), (35), pp. 29-37, 2011.

[5] Canal C., Poizat P., Salaiin G.: Model-Based Adaptation of Behavioural Mismat-
ching Components. Tech. rep., IEEE Transactions on Software Engineering, 2008.

[6] Documentation of the ACME project. http://www.cs.cmu.edu/ acme/.

[7] Documentation of the C2 style.
http://www.isr.uci.edu/architecture/c2.html.

[8] Faber L., Pietak K., Byrski A., Kisiel-Dorohinicki M.: Advances in intelligent
modelling and simulation: simulation tools and applications. In: Agent-based si-
mulation in AgE framework, pp. 55—83. Springer, Berlin Heidelberg, 2012.

[9] Fowler M.: Inversion of Control Containers and the Dependency Injection Pattern
2004. http://martinfowler.com/articles/injection.html.

[10] Grochowski M., Schaefer R., Uhurski P.: Diffusion based scheduling in the
agent-oriented computing systems. Lecture Notes in Computer Science, (3019),
pp. 97-104, 2004.

[11] Hall R. S., Pauls K., McCulloch S., Savage D.: OSGi in Action — Creating Modular
Applications in Java. Manning, 2011.

[12] Home page of the OpenCOM dynamic software component model.
http://opencomc.sourceforge.net/.

[13] Meyer B.: Design by Contract. Prentice Hall PTR, 2002.

[14] Oreizy P.: Issues in the Runtime Modification of Software Architectures. Technical
report, vol. 96, issue 35 (University of California, Irvine. Dept. Information and
Computer Science), 1996.

[15] Szyperski C.: Component Software: Beyond Object-Oriented Programming. Ad-
dison-Wesley Longman Publishing Co., 2002.



Model of reconfiguration in component environments

15

Affiliations

Jakub Grzesiak
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland

Lukasz Jedrychowski
AGH University of Science and Technology, Department of Computer Science, Krakow,
Poland

Received: 8.04.2014
Revised: 16.10.2014
Accepted: 14.10.2014



